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Preface

When you are teaching, there always comes a time when you know that you
have to sit down in front of your computer and start LATEXising your lecture
notes. You know it, but you don’t want to do it because it is very time
consuming and you’ve got most certainly more “important” things to deal
with . . .Well, indeed you know you are wrong because each time you did it
in the past it was a great experience: for you and your students. For you,
because this exercice forces you to precise your thoughts and clarified them;
for your students because the lecture notes you produce provide a reference,
and more material than you can present during the class.
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Chapter 1

Introduction

The aim of these lecture notes is to provide the reader with sufficient in-
formation to solve the problems of mathematical physics from a numerical
point of view. We will basically focus on the resolution of Ordinary Dif-
ferential Equation (ODEs) and Partial Differential Equations (PDEs). Of
course, the subjects covered by computational physics or numerical analysis
at large are not restricted to differential equations. This choice is a matter
of taste: we do think that solving ODEs and PDEs with a computer is fun.

We will not enter into much details of numerical analysis and our pre-
sentation will be guided by the purpose of implementating the methods in
the form of a computer program as a final product. Nevertheless, we will try
and provide proofs of any results that we might need rather in a physicist
style than a mathematician style, say with lack of all the rigour but most of
it 1.

We will not treat the subject of computer program development, by lack
of place, and consequently these notes will be as far as possible computer
language agnostic as far as the presentation of algorithms and mathematics
are concerned. When useful, we might use some C/C++ or Fortran short
programs within the core of the text but trying to avoid advanced features
of theses languages and mostly used them as pseudo-codes. Well, we could
have invented some kind of pseudo-code language for the only purpose of
being used in these notes but why re-invent the wheel after all ?

Some of our colleagues does not really understand why we bother our-
selves coding in C/C++ or Fortran all day long when programs like Mathlab

or Mathematica or alike can do the job. Sometimes your problems are so
specific that you need to tune your methods and algorithms to your par-
ticular problems and you will not find tools that will do the job without
pain. It is almost always impossible to get analytical results for the problem
we need to solve in astrophysics such as radiative transfer, radiation hydro-
dynamics or magneto hydrodynamics, . . . There is even no needs to invoke

1Yes, let’s put it that way.
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2 Chapter 1. Introduction

such difficult physical problems, you might consider these simple differential
equations where we want to seek the function y of the variable x

y′(x) = x2 + y2(x) or (1.1)

y′′(x) = 6 y2(x) + x , (1.2)

where it can be proved that no analytical solution can be found (e.g. see
Henrici 1962).

Getting analytical results is possible from time to time, but even in that
case you might (always ?) want to get numerical results out of your analyti-
cal results. At least this is what you need if these results are to be compared
to what Nature has to say about your own particular way of discribing it.
The results can be quite involved with series of series of nightmarish tran-
scendental functions. An example is given by the Mie theory of scattering of
light by spherical particules (e.g. such as interstellar dust grains or simply
water clouds in our atmosphere). You might want to have a look at the
Mie theory results in Bohren & Huffman (1998). So ok, we have analytical
results and now what ? Well, in this particular case what these authors
did is to provide fortran codes to numerically compute the results. By the
way, these are the kind of analytical results you cannot expect that a formal
solver program can find easily, if at all. What if your analytical results are
simple, say as simple as a good old sin(x) for a given real number x ? Well,
if you need the numerical value of the sin for a given x, you cannot escape to
devise (or let a calculator do it for you) some numerical methods to estimate
it to a certain level of precision.

In these lectures, we will mainly expose the mathematics of the numer-
ical methods to solve the equation of mathematical physics, but keeping in
mind that the actual computation will be executed by a computer instructed
through a computer program. Of course, numerical methods where devel-
oped before the advent of the first computers (roughly around 1940). If we
look at the name of some famous contributors to numerical analysis such as
Gauss (1777), Newton (1643), Lagrange (1736), Runge (1856), etc, and we
can even track down to the computation of π (Egyptian, ∼ −2000) or

√
2

(Babylonian ∼ −1800). Consequently, there is no ambiguity: it has nothing
to do with computers after all and the computation could be in principle
done by hand. Nowadays, the numerical computation are so complex (in
particular in astrophysics) that we need a computer to store the amount of
necessary data and to compute as fast as possible. Super computing facili-
ties can reach the PFLOPs, i.e. 1012 floating point operations per seconds,
but even with these performance, some computation might take days or
weeks. In some very specific cases, the TFLOPs can be obtained at almost
no cost (well, ∼ 2000 euros) compared to large facilities, by using the Graph-
ics Processing Units (GPUs) for general purpose computation. Nowadays,
numerical computation, and particularly in astrophysics, are intimately as-
sociated with the use of computers and their programming and chances are
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that if you start a phd you finally end up using a computer to do some
computations.
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Chapter 2

Representation of numbers

2.1 Introduction

In this chapter we will give a brief description on how real number are
represented in order to be handled by computers. We will not enter into the
most gory details of the arithmetic of floating point numbers. The reader
can find them in numerous reference but for instance Goldberg (1991) is a
very good start.

The good news is that most of the time we can just ignore that we are
not dealing with real numbers but just a finite subset of it: the floating point
numbers. The level of precision to which we can represent real number and
proceed to some basic arithmetic operation is of course finite but, in the
so called double precision IEEE standard used my almost every computer
on earth, is so tiny, 10−16, that we can most of the time ignore its effect.
Most of the time, but not every time. You will eventually put yourself into
uncomfortable situations where for instance

(a+ b) + c 6= a+ (b+ c) , (2.1)

exp (log x) 6= x , (2.2)

x2 − y2 6= (x− y) (x+ y) , (2.3)

1 + 10−17 + 10−17 · · · 10−17
︸ ︷︷ ︸

1017

6= 2 , (2.4)

and you might conclude that we live in a dangerous world. However, the
situation might look even worse considering the following example. If we
think it twice, we all know that 0.1 cannot be represented exactly in base 2.
Indeed, the representation of 0.1 is 0.0001100110011 . . .. So, at some point
we have to stop our notation and we make consequently an error because
of this truncation. It is pretty much the same as considering that 1

3 as an
infinite decimal representation 0.33333 . . ., except that we are more used
to it. In your favourite computer language, whenever you write something
like double x=0.1; for instance, you make an error. And if you know how

5



6 Chapter 2. Representation of numbers

to print the 50 first digits (in base 10) representing this number (e.g. try
printf("%.50e\n",0.1); in C), you will find that indeed x is rather given
by

x ≈ 0.100000000000000005551115123125782702118158340454102 . . . ,

clearly not what you expected.
Consider the following C++ program (not a very difficult one, but just

skip this if you cannot understand it)

#inc lude <iostream>
#inc lude <c s td l i b>

us ing namespace s td ;

i n t main ( ) {
double a=1. ;
double b=10. ;
double c=a/b ;

i f ( c==a/b)
cout << ”Ok” << endl ;

e l s e
cout << ”Not ok . . . :−)” << endl ;

r e turn EXIT SUCCESS;
}

You might think that the results of this program would be to always
print out “Ok”. You are wrong. It’s a compiler issue (gcc in that case)
but definitely not a bug, say, an obscure feature. At some point during the
compilation, c and a/b are not computed with the same level of accuracy
(a compiler feature) and since 0.1 cannot be represented exactly, you do not
know what is the results, it depends on the version of the compiler and your
system. It might be the case that the compiler does not create a variable,
i.e. a location in the data of your program, for storing the results of a/b but
instead uses a processor register.

This is a very strange behaviour and you cannot understand it if you
ignore the way numbers are represented by computers.

2.2 Floating point numbers

Let’s start with the usual decimal (Arabic) notation of numbers like 1.34,
3.14 or 0.9 . . . where the dots represent the infinite repetition of 9. For x ∈ R

we can always write x in the following manner

x =

(
∞∑

k=0

dk+1 10
−k

)

× 10e , (2.5)
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where we can take dk+1 =
⌊
x× 10k−e

⌋
−
⌊
x× 10k−e−1

⌋
10 and e = ⌊log10(x)⌋

for k ≥ 0.

However, when you write a number down in this form, you usually trun-
cate the notation and you write something like this

x = d1.d2d3 · · · dp × 10e , (2.6)

using the “scientific notation” with an exponent e and p digits in base 10.

We can formalise this to obtain the floating point numbers, which are of
this form. x is a floating point number if

x = ±m× βe , (2.7)

wherem, themantissa, can be written in the following form : m = 0.d1d2 · · · dp
with only p digits.

With such a definition there is no unique notation; we could write 0.3×
101 or 0.03× 102 for instance. In order to ensure the uniqueness we impose
that d1 6= 0 and the number are said to be normalized. Of course in that
way 0 is simply missing and we add it to the set of floating point numbers.
A system of floating point numbers is defined by the number of digits to be
used, the base β > 2, and the max and min value for the exponent, emax

and emin respectively. Consequently, there are 2× (β − 1)× βp−1 × (emax −
emin + 1) + 1 floating point numbers in a given system.

A mantissa m verifies the following inequalities

0.1 0 · · · 0
︸ ︷︷ ︸

p−1

≤ m ≤ 0. (β − 1) · · · (β − 1)
︸ ︷︷ ︸

p

, (2.8)

that simplifies in

β−1 ≤ m ≤ 1− β−p . (2.9)

In the following, for the seek of simplicity, we will use a strict inequalities
on the right, i.e.

β−1 ≤ m < 1 . (2.10)

2.3 Rounding operation

2.3.1 Definition

Let’s consider a real mantissa m that quite generally will not be a floating
point number (from now on, we will use the shortest term “floats”). If we
want to represent this mantissa as a float, we have to discard some of the
digits and keep only p of them. We could indeed simply remove them. This
operation is called “truncation”. However, most of the time what we want
to do is to choose the float that is the closest to m. This operation is called
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rounding to nearest, or simply rounding. By writing down a few examples,
you can convince yourself that this operation can be formalised as

mp=̂flp(m) = β−p

⌊

βpm+
1

2

⌋

for m > 0 and (2.11)

= β−p

⌈

βpm− 1

2

⌉

for m < 0 , (2.12)

where ⌊x⌋ and ⌈x⌉ are respectively the floor and the ceiling (i.e. integer
parts) functions.

2.3.2 Errors

By approximating m by mp we make an error, the so-called rounding error.
Let’s derive an upper limit to the rounding error. From the definition of
⌊x⌋ = max {i ∈ Z | i ≤ x}, we have

x− 1 < ⌊x⌋ ≤ x . (2.13)

From Eq. (2.11) and (2.13) we derive

βpm− 1

2
<

⌊

βpm+
1

2

⌋

≤ βpm+
1

2
,

and multiplying this last relation by β−p we obtain

m− 1

2
β−p < mp ≤ m+

1

2
β−p

and by definition of the absolute rounding error ∆m = mp −m we finally
obtain

|∆m| ≤ 1

2
β−p . (2.14)

This upper limit is actually 1
2 units in the last place (the pth digits after the

“.”) or ulps.
Recalling Eq. (2.10), since 1

m ≤ β, we finally have for the relative round-
ing error ∣

∣
∣
∣

∆m

m

∣
∣
∣
∣
≤ β

2
β−p . (2.15)

The upper limit in (2.15) is called the rounding unit and is noted u =
β
2 β

−p.

2.4 Floating point operation

When we want to represent a real number by a float, we have seen that we
can introduce an error which can be as large as one rounding unit. Is this
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the only source of error ? The answer is negative. When we proceed to a
basic arithmetic operation between floats, it might happen that the results
is not a float and may require more digits to be stored than we are allowed
to or simply an infinite number of digit (consider the division of 1 by 10
in base 2). We will use the notation ⊕, ⊖, ⊗ and ⊘ for the floating point
arithmetic operation. For instance, we cannot assume + and ⊕ to be equal
and in general x+ y 6= x⊕ y even if x and y are indeed floats.

We can adopt a very simple model of the floating point operation. We
will forget about the details of the hardware implementation of the actual
arithmetic operation and assume that we can have as many bits as necessary
to store the result of the operations on two mantissas and then still get the
result correctly rounded. We summarise the procedure as follows

1. Before doing the actual operation, mantissa might be aligned (for ad-
dition and subtraction) , the exponent changed accordingly or added/-
subtracted for multiplication and division,

2. the operation is carried out and the results stored in a sufficiently large
register,

3. we might shift again the mantissa of the results in order to have a
normalized float,

4. then we results is rounded with the correct number of digits

Indeed, following this procedure we only introduce an error in the last
item of the above list when we correctly round the results. However, we
already know the relative error we might introduce, 1 rounding unit. Sticking
to this very simplistic model there nothing more to add and we have the
following results for operation op (standing for +, −, × and /)

x op y = x op y (1 + δ) , (2.16)

with |δ| ≤ u.
Note that the above results is not necessarily ensured if we do not have

access to a sufficiently large register to store the results. Let’s figure out the
number of bits the register must contain.

For the multiplication of two floating point mantissasmx = 0.d1d2d3 · · · dp
and my = 0.d′1d

′
2d

′
3 · · · d′p obviously the results can be exactly stored with 2p

digits. However, we do not need to store 2p digits because we will round the
results to p digits anyway. If we consider the product of the 2 mantissas we
have

β−2 ≤ mxmy ≤ 1 ,

and we see that we might need to shift the results at most 1 digit to the
left to normalized it. Basically, when we need this normalisation (i.e. when



10 Chapter 2. Representation of numbers

mxmy ≤ β−1) the results is of the form

mxmy = 0.0 d′′1d
′′
2 · · · d′′p+1

︸ ︷︷ ︸

p+1digits

. . . .

Now, when we shift to the left to normalized, the p first digits of the results
d′′1 · · · d′′p will get in the right place but we need an extra digit to round
correctly the number to p digits. The conclusion is that finally we need only
to store the results with p + 2 digits in order to get the correctly rounded
results. For the division the situation is pretty much the same if we consider

not mx

my
but β−1 mx

mY
instead while updating the exponent accordingly. We

just have to notice that in some situation the result just cannot be stored
exactly (and 2p digits will not be sufficient to store it) but we again only
need p+ 2 digits to get the correctly rounded results for the same reasons.

For the addition and subtraction the picture darkens somehow. If we
consider two normalized mantissas, expressed in base 2 for the sake of sim-
plicity, the least difference that we can get is given by

|mx −my| = 0. 10 · · · 0
︸ ︷︷ ︸

p

0

− 0.0 11 · · · 1
︸ ︷︷ ︸

p

.

Generalising to an arbitrary base β, we see that the lower bound on |mx−my|

is β−1 − β−1 (β − 1)

p
∑

k=1

β−k or simply β−(p+1). This means that we might

end up in situations where the difference |mx −my| is given by

|mx −my| = 0. 00 · · · 0
︸ ︷︷ ︸

p

d′′1d
′′
2 · · · d′′pd′′p+1 , (2.17)

from which we see that to correctly round the results after normalisation, a
shift of p digits to the left, we need 2p+ 1 digits.

The conclusion is that within the limit of our simple floating point op-
eration model, we need globally to have a register as large as 2p + 1 digits.
Typically, the register are nowadays 80 bits large with actual processors.
Note that with IEEE double precision (see next section) we unfortunately
need 105 digits. In fact, it can be shown that in base 2 only p + 2 bits are
necessary to get the correctly rounded results(see Knuth 1981). Of course,
the actual implementation of the arithmetical operations get a bit more
complicated (the more bits to store the intermediary results the less diffi-
cult to implement) but the main point is that it can be achieved and as far
as arithmetical operations are concerned you can rely on Eq. (2.16) to be
true.
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2.5 IEEE floating point standard

The Institute of Electrical Electronics Enginners (IEEE) defined a standard
for the floating point numbers. There are several rounding modes we did
not talk about, but in particular if we round to the nearest floating point
number with (2.11) or (2.12) the standard ensures that the upper limit to the
relative error is indeed 1 rounding unit. Concerning the arithmetic operation
we also have

x op y = x op y × (1 + δ) , (2.18)

where δ, the relative error, must verify

|δ| ≤ β

2
β−p = u . (2.19)

There is nothing imposed on usual functions such as sin, exp, log, etc,
except for the squared root for which we must have

sqrt(x) =
√
x× (1 + δ) , (2.20)

with again |δ| ≤ β

2
β−p.

2.5.1 Single precision

In the single precision (“float” in C/C++) specifications we use 32 bits
words to code the number, we have

• 1 for the bit sign,

• 23 for the mantissa and

• 8 for the exponent.

In this system, the mantissa are given by d1.d2d3 · · · dp, slightly different
from our convention. An interesting point is that d1 6= 0, in base 2 it
is always 1. In practice we will not use a bit for setting it to 1, we would
simply lose that bit. Actually, we can assume that d1 = 1 and use p bits after
the “decimal” point. We gain an extra bit of precision with this procedure
and we have p = 24, not 23 !

From the previous considerations, the rounding unit (the machine pre-
cision actually) is equal to 2−24 ≃ 5.96046 × 10−8.

We can defined the so-called machine epsilon, ǫ, sometimes abusively
called the machine precision1, as the distance between 1 and the first floating
point number immediately larger than 1. In this case it is 2p−1 with p = 24

1Recall that the rounding unit is the machine precision.



12 Chapter 2. Representation of numbers

i.e. ǫ = 1.19209 × 10−7. Indeed ǫ = 2u, but if we consider the precision to
which numbers are rounded independently of the rounding mode (rounding
to nearest as we did or rounding by excess or by default), in the worst case
it will indeed be the machine epsilon. In practice, we will always use the
rounding to nearest mode so that the machine precision is indeed half ǫ.

We have 28 possibilities to encode the exponent. However, the sequence
of bits corresponding to 00000000 and 11111111 are reserved. The first, to
code 0 and denormalized numbers (yes, they exist finally but we will ignore
them . . . ) and the former to code exceptions (±∞, NaN, i.e. Not A Number,
etc) when we feel like dividing by 0 for instance. So we still have 28−2 = 254
possible exponents. It would not be wise to use a bit just to code the sign
of the exponent. Instead, the standard code the value of the exponent plus
27 − 1 = 127, i.e.

e+ 127 = 1, · · · , 254 , (2.21)

or

e = −126, · · · ,+127 . (2.22)

The largest normalized float is then max = 2 × 2127 ≃ 3.40283 × 1038

(when all the mantissa bits are set to 1) and the smallest min = 2−126 ≃
1.17549 × 10−38. If we obtain a number lower than min that cannot be
represented as normalized float, the situation is called floating underflow.
Conversely, if a number is larger than max we are dealing with a floating

overflow.

To summarise we have

u ≃ 5.96046 × 10−8 , (2.23)

ǫ ≃ 1.19209 × 10−7 ,

min ≃ 1.17549 × 10−38 and

max ≃ 3.40283 × 1038 .

2.5.2 Double precision

For the double precision (“double” in C/C++) a 64 bits word is used with
1 bit for the sign, 52 for the mantissa (getting an extra bit of precision with
the same trick, i.e. p = 53), and 11 for the exponent. We leave it as an
exercise for the reader to show that we have

u ≃ 1.11022 × 10−16 , (2.24)

ǫ ≃ 2.22045 × 10−16 ,

min ≃ 2.22507 × 10−308 and

max ≃ 1.79769 × 10308 .
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Just a last remark. It is not strictly speaking true to say that in C/C++
float and double correspond to IEEE single and double precision. It will
be true in practice in most of cases, but the C/C++ standard just says
that the size (in bits) of a double is larger or equal to the size of a float.
However, in Fortran it is possible to specify exactly what you want with
real(kind=4) (4 bytes) or real(kind=8) (8 bytes).
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Chapter 3

Mathematical tools

3.1 Interpolation

To fix the ideas, let’s assume that we are given a set of real abscissa xi for
i = 1, · · · , n. Let’s further assume that we have a functional relation between
the x values and another real variable y by the mean of a real function f ,
and that the only information we have is the values of yi = f(xi). What
if we need to make a guess on the value of y = f(x) for a given x different
from the xi ? If x belongs to the interval spanned by the xi’s, this is called
interpolation, outsite it is called extrapolation.

When do we want to do such a thing ? Perhaps because we have some
experimental or numerical data and we need to make a guess between the
tabulated values of a given function. Before the rise of computer, in order
to determine the value of a special function, like this good old “sin” for
instance, you would interpolate from the tabulated values in a handbook (see
Abramowitz & Stegun 1964) for instance. Nowadays or course, you might
want to use a computer program to get these results.

Undoubtedly, interpolated tabulated values is often quite useful. Our
interest here is of a different kind though. Interpolation is the basis of
numerous methods in numerical analysis. In particular, we will make use of
interpolation when trying to solve differential equation or simply integrating
real functions. The reason is obvious: we live in a discrete world. We will
solve the problems of continuous mathematics by making them discrete and
there is no way to escape that. For instance, if we want to play with a
real function f of a real variable x we will explicitly, but most of the time
implicitly, use tabulated values of this functions in our considerations in
order to differentiate or integrate this function.

In summary, our interest in the interpolation is not practical-we don’t
want to interpolate data- but theoretical since it is inherent to almost all
the numerical methods presented in theses lecture notes.

15
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3.1.1 Lagrange interpolation

Again, we are provided with two sets of values: one for the abscissas, the
xi’s and the corresponding ordinate values, the yi = f(xi) where f is a given
function. Notice that we do not have necessarily access to f (for instance
when dealing with experimental data). The aim of the game is to estimate
the value of f(x) for x 6= xi and provide an expression to the error we make
in this procedure.

Our estimation must be a functional of the yi and a function of x. One
of the simplest thing we can do is to use a linear combination of the f(xi)’s.
If f̄(x) is the approximation to f(x) we are seeking for we can use

f(x) =

n∑

k=1

lk(x) f(xk)

︸ ︷︷ ︸

f̄(x)

+e(x) (3.1)

where the lk(x) are real coefficients depending on x and e(x) is the error.
Up to that point, our considerations are quite general and we did not

made any assumption about the lk function (of x). By the definition of the
interpolation procedure we must have f(xi) = f̄(xi) for all i = 1, · · · n or in
other words e(xi) = 0. So if we set x = xi in Eq. (3.1) we obtain

f(xi) =

n∑

k=1

lk(xi) f(xk) , (3.2)

from which we conclude that we must have

lk(xi) = δki , (3.3)

where δ is the Kronecker symbol.
Eq. (3.2) is a general linear 1 interpolation formula. We need to specify

the expression of the lk(x) functions in order to obtain something useful.
With Lagrange interpolation we chose polynomials for the lk’s. Indeed,

through the n points (xi, yi) for i = 1, · · · , n goes a unique polynomial f̄ of
degree n− 1. f̄ being a linear combination of the lk’s, there are themselves
polynomials of order n − 1. From Eq. (3.3) we know that lk has the n − 1
roots xi for i 6= k and that lk(xk) = 1. From these properties lk can be
expressed as

lk(x) =
(x− x1) (x− x2) · · · (x− xk−1) (x− xk+1) · · · (x− xn)

(xx − x1) (xk − x2) · · · (xk − xk−1) (xk − xk+1) · · · (xk − xn)
,

(3.4)

1Linear in the sense that we mix up the f(xi) linearly, but this does not mean f̄ will
be linear.
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where we assume that we are not dealing with the particular case x 6= x1
and x 6= xn for the purpose of showing clearly the avoidance of the (x− xk)
term.

Formally, it is customary to introduce the polynomial Pn(x) defined by

Pn(x) =

n∏

i=1

(x− xi) , (3.5)

and plug it in the expression Eq. (3.4) of the lk’s to obtain after a little
algebra the following expression

lk(x) =
Pn(x)

(x− xk) P ′
n(xk)

. (3.6)

To prove Eq. (3.6) we must remark that the derivative of Pn is simply
given by

P ′
n(x) =

n∑

i=1

n∏

k=1

k 6=i

(x− xk) , (3.7)

which give the denominator of Eq. (3.4) when we evaluate it at x = xk.

3.1.2 Error expression

We are not through yet. We need an expression of the error e(x) that will
allow us to derive upper bounds of its absolute value |e(x)|. In order to do
so we need a preliminary results.

First, recall the Rolles theorem stating that if f is a real function of
a real variable x continuous in [a, b] and differentiable on (a, b) verifying
f(a) = f(b) = 0, then there exists c ∈ (a, b) such that f ′(c) = 0.

From the Rolles theorem we can deduce by inference that if g, a real
function of real variable x, has n+ 1 zeros g(z0) = g(z1) = · · · = g(zn) then
there exists α inR in the open interval spans by the zis such that we have

g(n)(α) = 0 . (3.8)

To show this we assume first that the zeros are ordered like this z0 < z1 <
· · · < zn. We can apply the Rolles theorem on each sub-interval (zi, zi+1):
there exists an αi in each interval such that g(1)(αi) = 0. The derivative g(1)

of g now has n zeros, the αis. Consequently, we can repeat the process and
show by inference the results expressed by Eq. (3.8).

Let’s define now the function F of a real variable z (not x!) by

F (z) = f(z)− f̄(z)−
[
f(x)− f̄(x)

] Pn(z)

Pn(x)
, (3.9)

where f̄(x) is the value of the Lagrange polynomial at x and where we
further assume that x 6= xi (for i = 1, · · · , n).
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We note that F has n+1 zeros since F (xi) = 0 but also F (x) = 0. Then,
we can apply our lemma Eq. (3.8) and there exists an α in the interval span
by the xis and x such that F (n)(α) = 0.. First, by remarking that f̄ being
a polynomial of the nth degree its nth derivative is zero, i.e. f̄ (n)(z) = 0
for all z. Second, from the definition of Pn(x) Eq. (3.5) we further have

P
(n)
n (x) = n!. Finally, we have obtained the expression of e(x) that we were

looking for since f(x)− f̄(x) = e(x)

e(x) =
Pn(x)

n!
f (n) (α(x)) , (3.10)

where we write explicitly the dependence of α on x. We derive Eq. (3.10)
assuming that x 6= xi for any i. However, since for x = xi we have Pn(x) = 0
then Eq. (3.10) is also valid for x = xi.

To summarise our results, the Lagrange interpolation is described by
thw following formula

f(x) =

n∑

k=1

Pn(x)

(x− xk)P ′
n(xk)

︸ ︷︷ ︸

f̄(x)

+
Pn(x)

n!
f (n) (α(x))

︸ ︷︷ ︸

e(x)

, (3.11)

for α(x) in the interval spanned by the xis and x.
The expression for the error Eq. (3.10) contained an unknown function of

x: of course, otherwise we would know the error or in other words the value
of f(x) itself! Still, this expression is quite useful to derive an upper bound
on the error. If we know for instance that f (n) is bounded by a constant
M in the interval spanned by the xi and x we deduce an upper bound on
|e(x)| ≤M |Pn(x)

n! |

3.1.3 Things can go wrong

A few remark on problems we might want to avoid. Even if you know an
upper bound M on |f (n)(x)| for all x be very careful: extrapolation, when-
ever x is outside the interval spanned by the xis, is a dangerous business.
You can convince yourself by noticing that lim

|x|→∞
|Pn(x)| = ∞. It is the

upper bound on |e(x)| that goes to ∞ to e(x) itself so we can only say that
things might go wrong. Perhaps they will not, but you might have found
out for yourself that the Murphy’s law is unfortunately verified very often.
Ok, we are not going to interpolate just for the fun of it but for the purpose
of approximating continuous differential operator. So extrapolation is not
our main concern but we better keep in mind when things might go to hell
and avoid a lot of annoyances.

However, there is a problem more critical for us. When n is large, unfor-
tunately not quite large since n ≥ 4 can be sufficient, the Lagrange polyno-
mial has the unfortunate tendency to oscillate. To illustrate this behaviour



3.1. Interpolation 19

 20  40  60  80  100

 0

 50

 100

 150

x

y
=
x

Figure 3.1: Runge effect. The dash line represent the line from which the
points (crosses) are generated between a = 0.1 and b = 100 for n = 13
points. In the abscissas and ordinates we introduced some random noise:
the x values can be shifted up to half the interval b−a

n−1 and a 15% noise is
introduced for the ys values. From a val From this set of points we compute
the Lagrange polynomial showing the oscillating behaviour.

let’s consider the straight line y = x. We generate points from this line but
we add some noise in the x and y value. For 12 points, we clearly can see
the oscillations in Fig. (3.1).

We must be aware of those possible oscillations. When we proceed as in
Fig. (3.1), i.e. when we do interpolate some data, by having a look at the
Lagrange polynomial we can clearly see that we are in trouble. However,
when we will use the polynomial to elaborate a numerical method for the
integration of differential equation we will not see directly the polynomial
we will be using and it could be difficult to identify the problem. Usually,
to remedy to this problem we interpolate by block on sub-intervals with
polynomial of low degree (3 or 4). For the purpose of interpolating data
this is called spline interpolation if we further add additional requirement
of continuity for the function and its successive derivatives (see Ralston &
Rabinowitz 2001, for more details).
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3.2 Integration

3.3 Linear system of equations

For solving PDEs we will use finite differences to represent differential op-
erators. In some occasions, in order to obtain our numerical approximation
we will need to solve for linear systems of equations of the type

Ax = b , (3.12)

where x ∈ R
m is the unknown, A is a m×m matrix and b ∈ R

m is a given
vector.

3.3.1 Matrix splitting methods

The idea behind this kind of methods is to derive an iterative process in
which a sequence of estimations, xn, converges to the solution x of Eq. (3.12)
as n → ∞. Let’s assume that we can split the matrix A in two parts
A = Ã−∆A where Ã can be easily inverted. Let’s further assume that we
already have an estimation xn and that we want to derive the next (better)
estimation xn+1 = xn +∆xn, which defines ∆xn. Ideally, we would like to
solve exactly for ∆xn

(

Ã−∆A
)

(xn +∆xn) = b . (3.13)

Of course, we assume that we cannot (or don’t want) to solve for Eq. (3.13)
because it would mean we do not have to use an iterative method at all !

Let’s further assume that in some sense ∆A is “small” compare to Ã

and that “order 2” terms such as the product ∆A∆xn can be neglected
compared to other. We expect (hope) that the closer Ã and A will be, the
more efficient our method will be. It seems reasonable to conjecture such
a behaviour because in the degenerate case where ∆A = 0 our “iterative”
method gives the answer in just one single step, the best convergence rate
you can dream of . . .

Valid or not2, our approximation (i.e. neglecting ∆A∆xn) to Eq. (3.13)
suggests the following iterative process

∆xn = Ã−1 (b−Axn) , (3.14)

or equivalently

xn+1 = Ã−1 (b+∆Axn) , (3.15)

where we made use of the definition of ∆xn, i.e. xn+1 = xn +∆xn.

2Our only concern here is that the resulting iterative method is convergent and efficient
!
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Obviously, the true solution to the linear system, x, verifies Eq. (3.15)
and (3.14) which expresses the fact that x is a fixed point of the iterative
process. We still cannot say that the methods we are constructing are con-
vergent but at least it seems to make sense to continue our little adventure.

We will have an approach that will certainly make any mathematician
bumps his head on the walls because we won’t bother too much with the
mathematics of the convergence in particular cases. Our approach will be to
proceed finger crossed when faced with a given problem and bother about
convergence if we really have to do it. For more details you might want to
have a look at LeVeque (2007).

At least, here comes a description on how to prove convergence. We
introduce the error at iteration step n by en = xn − x. By injecting this
definition for the iteration step n+ 1 in Eq. (3.15) we obtain

en+1 = Ã−1∆Aen , (3.16)

and by inference we can easily show that we have

en =
(

Ã−1 ∆A
)n

e0 . (3.17)

Now, let’s assume that the matrix Ã−1∆A can be diagonalize in the fol-
lowing formRΛR−1 whereΛ is diagonal. The convergence, i.e. limn→∞ ‖en‖ =
0 for a given norm is then expressed by

ρ
(

Ã−1∆A
)

< 1 , (3.18)

where ρ
(

Ã−1∆A
)

is the spectral radius of Ã−1∆A defined by maxi=1,··· ,m |λi|,
where the λi’s are the diagonal elements of Λ.

Jacobi

The Jacobi method is obtained by using the simplest matrix we can invert
by taking the diagonal of A

Ã =








a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 · · · · · · amm








. (3.19)

Consequently, the iteration algorithm is given by

xn+1
i =

1

aii






bi −

m∑

j=1

j 6=i

aij x
n
j







, (3.20)

where xni is the ith element of xn.
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Gauss-Seidel

The Gauss-Seidel iterative method is obtained by considering the lower part
of A including the diagonal, i.e.

Ã =








a11 0 · · · 0
a21 a22 · · · 0
...

...
. . .

...
am1 am2 · · · amm








, (3.21)

since we know how to invert such matrix by forward substitution. Let’s
assume that we want to solve for y in the linear system Ã y = c. We can
solve the first equation to obtain

y1 =
b1
a11

. (3.22)

Then we repeat the process like this

y2 =
1

a22
(c2 − a21 y1) ,

y3 =
1

a33
(c3 − a31 y1 − a32 y2) ,

yi =
1

aii
(ci − ai1 y1 + ai2 y2 + · · ·+ ai i−1 yi−1) , (3.23)

... =
...

ym =
1

amm
(cm − am1 y1 + am2 y2 + · · ·+ amm−1 ym−1) ,

to obtain the remaining values of yi for i = 2, · · · ,m.
With this algorithm we obtain the solution y to our problem. Note that

in Eq. (3.23) we determine the value of yi from the already computed and
updated values of yj for j < i.

By remarking that Eq. (3.15) is of the same form with c = b + ∆Axn

and y = xn+1, we obtain

xn+1
i =

1

aii



bi + (∆Axn)i −
∑

j<i

aij x
n
j



 . (3.24)

We can express the ith component of the vector ∆Axn by

(∆Axn)i = −
∑

j>i

aij x
n
j . (3.25)

If we insert Eq. (3.25) in Eq. (3.24) we finally obtain the Gauss-Seidel

iterative method

xn+1
i =

1

aii



bi −
∑

j>i

aij x
n
j −

∑

j<i

aij x
n
j



 , (3.26)



3.3. Linear system of equations 23

for i = 1, · · · ,m.
If you look carefully at Eq. (3.20) and you compare to Eq. (3.26) you

can see that the difference between both method is the used in Gauss-Seidel

of updated values of xnj in the sum
∑

j<i aij x
n
j . In fact, in this sum xnj

is already the value of xn+1
j that we will have at the end of the “loop”

i = 1, · · · ,m.
While trying to implement the Jacobi method with a computer program

you might forgot that the xni in Eq. (3.20) are the values at the previous
iteration step and not the updated values. To do it right, you must store
these values in an auxiliary array, otherwise your Jacobi implementation is
wrong. The funny thing is that if you do this mistake 3 you end up with the
more efficient Gauss-Seidel method. This is the only case that I can think
of where you get better results through a programming mistake !

3I certainly did it !
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Chapter 4

Ordinary differential

equations

4.1 What is the problem ?

Chances are that you will very probably obtain an initial value problem
when playing around with your favourite physical problem. Basically, we
want to determine the function v of a variable t ∈ R verifying the following
first order differential equation

v̇(t) = f (v(t), t) , (4.1)

where f is a function of the two variable v and t. To fully specify the
problem, we need a “boundary condition”. In this case, it amounts to give
the value of v(t0), say v0, the so-called initial value. The problem is to
be solved for t greater than an “initial” parameter t0 (taken to be 0 if not
specified otherwise). The reason for quoting initial in the previous sentence
is that even though we used t, obviously for a time evolution, the problem
you might want to solve could well have nothing to do with a time evolution.
Also note that since we have just one independent variable t, Eq. (4.1) is an
Ordinary Differential Equation, or ODE for short.

Dealing only with the problem (4.1) might sound restrictive, and in some
sense it is, but indeed it takes only a little algebra to convince oneself that
indeed when solving problem (4.1) we are dealing with a much broader class
of problems.

For instance, when we want to solve a good old problem of (classical)
mechanics we need to solve a differential equation of order1 2. However, if
we introduce a new variable, the momentum p = dr

dt , we obtain twice as
much equations but of order 1. We can do this with the so-called splitting

1order appears in these lecture notes in many flavours, in this particular case it refers
to the order of the highest derivative involded.

25
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method. Let’s consider the following example

v̈(t) = t v̇(t) + v(t) . (4.2)

We can introduce the new variable u = v̇ to see that we obtain a system of
first order equations

(
u̇
v̇

)

=

(
t u+ v
u

)

. (4.3)

In fact, there is a price to the lowering of the equation order, we now have

to deal with vectors, here V =

(
u
v

)

. The equation can now be written

formally as
dV

dt
= F (V , t). We can even go further by introducing a new

variable w equal to the independent variable t so that we obtain





u̇
v̇
ẇ



 =





w u+ v
u
1



 . (4.4)

If we define V =





u
v
w



, now we have
dV

dt
= F (V ) where t disappears from

the equation which is then said to be autonomous.

In these lecture notes, we will only consider scalar problem for v. In some
situations, when no loss in generality could be expected, we will also use
autonomous equations to simplify the algebra. When studying the stability
of numerical methods for the resolution of partial differential equations,
again we will deal with scalars. Basically, the generalisation to vectors can
be summarised by saying that we need to consider eigenvalues of matrices
whenever we just consider scalar values. For the reader interested in gory
details Henrici (1962) is definitely a good place to go.

There is a point that remains to be discussed : when can we be sure
to have a unique solution to the problem depicted by Eq. (4.1) ? There
is indeed a theorem due to Lipschitz. If f is continuous and defined on a
domain in v and t (where we want to solve our problem) and if there exists
a constant K such that

|f(v, t)− f(v′, t)| ≤ K |v − v′| , (4.5)

for all v and v′ on the considered domain, then there exists a unique solution
to the initial value problem given in Eq. (4.1).

The fact that the solution exists does not mean that we can express it in
a closed form, like a convergent series or an elliptic integral or whatsoever
(this would mean - loosely speaking - that the problem is integrable). Take
for example the 3-body problem for which more then a century ago Bruns
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and Poincaré showed that such a closed form cannot be guaranteed2. So
even in such well-posed cases you might need to fire up that good old emacs

editor and start coding something, if you want to get at least some insights
on the solution. . .

There is a lot of good references on the numerical integration of ODEs.
If the reader wants to go further here comes a few. We strongly advise LeV-
eque (2007). Most of the material presented here follows more or less the
presentation of this author, in particular concerning the link between ODEs
and PDEs. If you want to read just one, read this one ! Ralston & Rabi-
nowitz (2001) is also a good place to go with an older exposition but still
worth reading and more or less coherent with LeVeque (2007). If you want
more mathematical details you can either have look at Trefethen (1996) 3 or
for the more adventurous at Henrici (1962) where you can find the details
with all the mathematical rigor. When time has come, you might want to
implement all theses idea in the form of a computer program. Press et al.
(1986) - “The numerical recipies” - will then be very useful.

4.2 Euler methods

Before entering the details of the numerical integration of ODEs, it is very
instructive to study the simplest method due to Euler. This method is
the member of a more general class, the one-step methods, for which we
advance our approximate solution from one “time” step to the next. We
thus assume that we want to obtain an approximate solution of Eq. (4.1)
for discrete values of t, i.e. for tn = t0 + n k where k is a constant called the
integration step and n is a positive integer. Let’s call these approximations
un. We use a superscript for indexing this value for reasons that will be
clearer in the next chapter concerning partial differential equations. We
change the notation from v to u at this point because we do not want to rise
the confusion between this approximation and v(tn), also noted vn, the value
of the exact solution. While devising a numerical method for integrating the
ODE we might want to ensure un ≈ v(tn) but of course we do not have in
general the equality un = v(tn).

Let’s assume that we have an approximation un for t = tn. In order to
estimate un+1 we can approximate the function u(t) by a straight line. Since
we have v̇(t) = f(v(t), t) it is natural to estimate the slope of this straight
line by f(un, tn). Now, using this value we obtain for v(t) ∈ (tn, tn+1) the
following approximation

v(t) ≈ f(un, tn) (t− tn) + un . (4.6)

2and it is really unlikely to exist, but this is really a long story related to the notion of
chaos. . .

3available at http://people.maths.ox.ac.uk/trefethen/pdetext.html.
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Considering the above equation for t = tn+1 gives us the Euler method

un+1 = un + f(un, tn) k , (4.7)

since k = tn+1 − tn, which is a recurence relation between the un that must
be started by using the initial condition u0 = v0.

By re-writting Eq. (4.7) in the following manner

un+1 − un

k
= f(un, tn) , (4.8)

we can see it with a different point of view. We can say that un+1−un

k is

the discrete version of the continuous operator d
dt where we replace it by an

expression involving finite differences.
We have seen previously in these lecture notes, that we can use the

backward finite difference for estimating the derivative of a function. In this
case we obtain

un+1 − un

k
= f(un+1, tn) , (4.9)

where we used un+1 on the right-hand side. By doing so, we must face a sup-
plementary problem because we cannot obtain un+1 directly we need some
more work, especially if f is a non-linear function of v. For an arbitrary f it
can be necessary to use iterative methods to solve the non-linear equation
for un+1 (e.g. Newton-Raphson method). These kind of method, i.e. when
we cannot get un+1 directly, is called an implicit method while whenever we
can (as in Eq. 4.8) it is called explicit.

At this stage, we can think that it is better to avoid implicit methods
because they will be with no doubt more difficult to implement. The awful
truth is that in some instances implicit methods are the best choice because
they are stable while explicit methods can be unstable in some cases. We
postpone the discussion of stability at the end of this chapter, but an un-
stable numerical method will lead to un values diverging exponentially from
the exact solution in some unfortunate circumstances : when the step k is
too large for instance. We will learn to determine the upper limit on k for a
method to be stable, but that means we cannot integrate as fast as we want
since our steps cannot be larger than a given value. Nevertheless, we will
learn as well to not always expect miracles from implicit schemes4.

As a side effect of considering the Euler’s method, let’s note that if
we take the arithmetic mean of Eq. (4.8) and Eq. (4.9) we obtain another
method, the so-called trapezoidal rule,

un+1 − un

k
=

1

2

(
f(un+1, tn) + f(un, tn)

)
, (4.10)

4unless you are dealing with stiff equations, a topic which for the moment is not included
in these lectures.
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which is again implicit. Indeed, if f depends only on t we recover the well
known extended Newton-Cotes formula of the same name. It is also called
the Crank-Nicolson method in the framework of the numerical solutions of
partial differential equations (see next chapter).

4.3 Truncation errors and consistency

In the Euler methods we approximate the function by a straight line and
by doing so we make a truncation error that we want to estimate. Let’s
assume that we have solved the problem exactly at t = tn, in other words
we have un = v(tn). This assumption may sound strange, because in a real
computation it is never true (unless the starting step is the initial condition
at which we impose u0 = v(t0)). But we make this hypotesis because our
present goal is to study just what happens in one step, i.e. how big is the
difference between the exact and the numerical solution after just one step
when starting from exactly the same values.

We then define the one-step error as the difference between the numerical
and the exact solution from tn to tn+1:

en+1 = un+1 − v(tn+1) , (4.11)

under the assumption that un = v(tn). In the case of the explicit Euler

method Eq. (4.8) it gives

en+1 = un + k f(un, tn)−
(

v(tn) + v̇(tn) k +
k2

2
v̈(tn) +O(k3)

)

and since un = v(tn) and consequently f(un, tn) = f(v(tn), tn) = v̇(tn), we
obtain finally

en+1 = −k
2

2
v̈(tn) +O(k3) . (4.12)

We see that the leading term in en+1 is a O(k2). Generally, a method is
said to be of order p if en+1 = O(kp+1), so that the Euler method is order 1.

Why kp+1 and not kp ? Because this error can be used as a rough
estimation for the error made in a fixed time interval T = Nk, where N
is the total number of steps we make on the whole. To estimate this total
error we sum up the one-step error N times, where for a fixed T , N ∝ 1

k
and the total error can be estimated as 1

k O(kp+1) = O(kp). When we say
that the scheme is of order p we mean then that in a fixed time interval, if
we divide the time step k by 2, the total error is roughly divided by 2p.

We can alternatively write things in the following way

en+1 = k f(un, tn) + un − v(tn+1) ,
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and

en+1 = −k
[
v(tn+1)− v(tn)

k
− f (v(tn), tn)

]

, (4.13)

using again the fact that un = v(tn) and f(u
n, tn) = f(v(tn), tn).

Let the term within bracket in the rhs of the above equation be noted
τn+1. It looks like, but is not, the following expression

un+1 − un

k
− f(un, tn) , (4.14)

which cancels out because the un are the solutions to this algebraic equation.
Now, if we inject the actual solution v to the ODE in Eq. (4.14) we obtain

the bracketed term in Eq. (4.13), but we do not get 0 this time because
the actual solution v does not verify our finite differencing scheme. The
value that we get is indeed τn+1. This error is also caused by our discrete
representation of a continuous problem and is therefore a truncation error in
the same way en+1 is. The jargon is here to make things more obscure5 than
they actually are because τn+1 is frequently called the truncation error as
opposed to the one-step error, en+1. Unfortunately, both errors belongs to
the class of “truncation errors” obtained whenever one treats a continuous
problem in a discrete way.

While it is more natural - at least we think so - to introduce the one-step
error, it is indeed easier to work with the truncation error because it usually
simplifies the algebra. In the case of the Euler method we can see that both
errors are related simply by en+1 = −k τn+1. Another supplementary formal
advantage of τn+1 respect to en+1 is the the fact that if the method is order
p we have simply τn+1 = O(kp).

Conceptually, while en+1 is simply an error on the solution, it is more
difficult to get a picture of what τn+1 indeed is. Remember its definition for
our simplest Euler method:

τn+1 =
v(tn+1)− v(tn)

k
− f (v(tn), tn) . (4.15)

In fact we might want to compute the truncation error in the equation
itself, whenever we inject our numerical approximations un in the actual
ODE Eq. (4.1). However, we cannot do that because the un are discrete
values and it makes no sense to talk about inserting them in the differen-
tial operator inside the equation (4.1). We then define a truncation error
τn+1 by proceeding the other way around: we inject the solution v in our
numerical scheme. It has the flavour of “To which level of accuracy does
my approximation verifies the original equation ?”, but is not! Instead, it
is rather an answer to the question “to which level of accuracy does the

5Well, as usual . . .
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exact solution verifies my approximation to the equation”. If you do not
feel at ease with the definition of τn+1 remember that it is simply related
to en+1 by en+1 = −k τn+1 as derived above. Indeed it is not that obvious:
when considering more complicated schemes, this relation between en+1 and
τn+1 is true only for the leading terms in k, but this will be enough for any
practical purposes.

The fact that τn+1 = O(kp) implies that τ → 0 as k → 0. This
property is called the consistency of the numerical method, and because
en+1 ∼ −k τn+1 it implies that en+1 ∼ k2 at least. If we make the approxi-
mation that after N steps the global error just adds at each step6, then the
error after a time T = Nk will actually go to 0 for a consistent scheme. This
property is really the minimum we can require to a numerical integration.
It would in fact sound strange if some truncation error introduced by the
numerical discretization actually did not decrease by lowering the time step!

We will now look to what happens to the one-step and truncation errors
in the case of the implicit Euler method. Starting from the definition put
in the form (4.13) we have

en+1 = −k
[
v(tn+1)− v(tn)

k
− f

(
un+1, tn+1

)
]

, (4.16)

where un+1 must not be replaced by vn+1! A little more work is in fact
needed in order to make the link between en+1 and τn+1. Since we have

f(un+1, tn+1) = f(v(tn+1), tn+1) + ∂vf(v(tn+1), tn+1) e
n+1 +O

(
(en+1)2

)
,

(4.17)
we have therefore

en+1 = − k

[
v(tn+1)− v(tn)

k
− f (v(tn+1), tn+1)

]

− k ∂vf(v(tn+1), tn+1) e
n+1 + k O

(
(en+1

)2
) , (4.18)

and finally we again have the formal relation

en+1 = −k
[
v(tn+1)− v(tn)

k
− f (v(tn+1), tn+1)

]

+ k O
(
en+1

)
(4.19)

which after Taylor expansion turns out to be O(k2) as for the explicit
scheme. Because the bracketed term in (4.19) is by definition τn+1, we see
that to leading terms in powers of k we again have en+1 ≈ −k τn+1.

When one has to verify the order of the method or just check the consis-
tency, the truncation error τ is more easy to work with even if the one-step
error is immediately meaningful.

6this is true only asymptotically for k → 0, but since in this limit on a finite time we
add an infinite number of errors, some care is needed : this is the problem of stability as
addressed in the next Section
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For explicit (or even implicit) Euler the scheme looks evidently consis-
tent, but this is not so for more complicated method like trapezoidal or
high-order Runge-Kutta or multistep methods. In general one can write
extremely complicated schemes, but consistency is really the 0-th order re-
quirement for an algorithm to be useful and not to be doomed to the trash
bin. Just to give general consideration, let’s imagine that a generic one-step
method for the equation (4.1) v̇(t) = f (v(t), t) reads as

un+1 = un + kΨ(un, un+1, tn, k) , (4.20)

(Ψ depending evidently on f). By definition the truncation error is

τn+1 =
v(tn+1)− v(tn)

k
−Ψ

(
vn, vn+1, tn, k

)
. (4.21)

If we Taylor-expand Ψ(vn, vn+1, tn, k) about Ψ(vn, vn, tn, 0) we get:

Ψ
(
vn, vn+1, tn, k

)
= Ψ

(
vn, vn + kv̇n +O(k2), tn, k

)

= Ψ(vn, vn, tn, 0)

+kv̇nΨvn+1 (vn, vn, tn, 0)

+kΨk (v
n, vn, tn, 0) +O(k2)

where subscripts in Ψ indicate derivatives with respect to the indicated vari-
able. Taking k → 0, to satisfy consistency one needs Ψ(vn, vn, 0, tn, tn) =
f(vn, tn). The reader can check that this holds e.g. for the trapezoidal
scheme.

4.4 Convergence

What could we ask from a numerical method whose purpose is to approxi-
mate the solution v(t) of and ODE ? As we saw previously, we hope to obtain
such an approximation by using a discrete ersatz of the original ODE. The
quality of our approximation depends on the integration step k. We con-
sider only consistent methods meaning that our ersatz equation transforms
into the continuous ODE, at least locally: we hope to obtain better approx-
imation when k → 0. However, we need more than that. For a fixed time
tN = T = N k, we demand that our approximation converge to the true so-
lution for an infinite number of steps, or in other words limN→∞ uN = v(T ).
Of course, consistency is a necessary condition, but is it sufficient ? Luckily,
for one-step methods it is.

We start by considering the explicit Euler method and then give a proof
of convergence for any one-step method.
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4.4.1 Qualitative behaviour of the numerical error

First, let’s have a naive and qualitative look to the behaviour of the error
in the Euler method. We have two contributions to take into accounts. We
have the truncation error arising from the approximation of the function by
straight-lines. We also have the rounding errors proportional to the rounding
unit u. Assuming that we start to integrate at t0 = 0 then for N steps in

total we have k =
T

N
for a fixed time T . The total (truncation+round-off)

error that we have is then given by

e(k) ≈ T

k
e+

T

k
u , (4.22)

with e is e = max
{
en+1|n = 1, · · · , N

}
and where we assume that the round-

ing error is ≈ u.
For the Euler method we saw that en+1 ∝ k2 since the method is order 1

so that the behaviour of the total error is expected to be

e(k) ≈ α k + β
u

k
, (4.23)

where α and β are constants that we assume close to unity 7.
Eq. (4.23) is definitely not perfect. The careful reader might have identify

that something is missing here which is the purpose of the next section. But
still, we can see the combined effect of truncation and round-off through
Eq. (4.23). When k → 0, the truncation error goes down but since we
are doing more floating point operations the rounding error goes up. This
competition between both effects as the consequence that we cannot reduce
k as far as we want to increase the precision. There is a lower limit for
which, by reducing k, we would obtain worse results, a situation that seems
somehow counter-intuitive. By setting the derivative e′(k) = α − β u

k2
to

zero we see that the optimal value for k is
√

β
α u

1
2 . By inserting this value

in Eq. (4.23) we obtain the results that the lowest value for the total error

is proportional to u
1

2 .
For double precision floating point numbers (double) this still gives us

a reasonable lower limit scaling as ∼ 10−8 relatively. However, for single
precision (float) this lower limit ∼ 10−4 is clearly not sufficient. So once
again, the numerical computation must be carried on with double floating
point numbers or we might get into troubles.

If the numerical method is order p we must modify slightly Eq. (4.23) in
the following manner

e(k) ≈ αkp + β
u

k
. (4.24)

In this case, the upper limit for the total error scales as u
p

p+1 and we clearly
see the advantages of higher order method in that case.

7Of course, this is ok only for our qualitative approach.
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4.4.2 What really matters: the global error

In Eq. (4.23) and (4.24) things are simple, but in reality they are less simple.
As we already said the one-step error en+1 assumes that for t = tn we have
un = v(tn), but if one needs to measure the true error during a whole
numerical integration this assumption cannot be made. Indeed, during an
integration step we are generating an error on something that was previously
containing numerical errors. If we are lucky enough this process will not lead
to the “explosion” of our numerical solution but if we are not, errors could
be amplified and we might get into troubles. Let’s look at this in detail.

Starting from the initial condition u0 = v(t0) we define the actual error
(global error) after the step n→ n+ 1 on v(tn+1) ≡ vn+1 by

En+1 = un+1 − vn+1 , (4.25)

which must not be confused with the one-step error en+1 because we do not
assume here that the problem is exactly solved for the previous time step:
un 6= v(tn) a priori. En+1 takes into account all the errors accumulated step
after step.

For a numerical integration method to be really useful we must demand
that the error En goes to zero when the time step k goes to zero, and this on
a fixed finite time T (which implies that the number of time steps N = T/k
goes to ∞). This is the natural definition of the convergence for the Euler

method.
If in this limit we can find an upper bound to ||En+1|| that can be made

arbitrarily small then our job is done and we have proved the convergence of
the Euler method (just to increase generality, we study the convergence in
some generic norm || · || to not limit ourselves to a scalar equation, for which
a simple modulus | · | would be enough). We will find that the property of
convergence is related to the fact that the truncation error τ goes to zero as
k → 0 (i.e. to the consistency of the scheme) and to some form of stability
(which in this case looks trivial but it will be less trivial for multi-step
schemes, see ??, and far less trivial when switching from ODEs to PDEs).

Recalling the expression of the Euler method Eq. (4.7) and the definition
of the truncation error Eq. (4.15) that can be re-written like this

vn+1 = vn + k f(vn, tn) + k τn+1 , (4.26)

we obtain for the global error the following expression

En+1 = un + k f(un, tn)

−
[
vn + k f(vn, tn) + k τn+1

]
. (4.27)

Recognizing un − vn as En and regrouping terms we finally have

En+1 = En − kτn+1 + k(f(un, tn)− f(vn, tn)) (4.28)



4.4. Convergence 35

Taking norms and applying the triangular inequality:

‖En+1‖ ≤ ‖En‖+ k‖τn+1‖+ k‖f(un, tn)− f(vn, tn)‖ (4.29)

Now from the Lipschitz condition there exists some positive constant K
such that :

‖f(vn, tn)− f(un, tn)‖ ≤ K‖un − vn‖
which since 1 + kK = |1 + kK| implies

‖En+1‖ ≤ |1 + kK| ‖En‖+ k‖τn+1‖ (4.30)

The global error is then bounded by the sum of two quantities: one is
the truncation error, the other is the amplification of the global error at the
previous step.

For a given value of k we have an upper limit, τ(k), on the values of ‖τn‖
for n = 0, · · · , N , N being the total number of steps (i.e. T = kN). We can
take τ(k) = maxn=0,··· ,N {‖τn‖} for instance, recalling that this upper limit
is itself a function of k, a O (k) in the particular case of the Euler method.

We have then

‖En+1‖ ≤ |1 + kK|‖En‖+ k τ(k) (4.31)

Then by induction one has :

‖En‖ ≤ |1 + kK|n‖E0‖+ k
n∑

m=1

|1 + kK|n−m τ(k) (4.32)

Now because we are looking for a bound in the limit k → 0, N → ∞
(T = Nk fixed), it is enough that for 0 ≤ m ≤ n, |1+ kK|n−m be uniformly
bounded by some constant in the given time interval. If on the contrary
|1 + kK|n → ∞ in such a limit, no bound on the global error would be
obtained this way. What is then necessary is some form of stability, which
ensures that the initial global error E0 (which is actually strictly equal to
zero without rounding errors) and the accumulated truncation error does not
get amplified without bounds when lowering the time step and increasing
the number of steps. In this case it is easy to satisfy such a requirement,
because since |1 + kK| ≥ 1 one has for 0 ≤ m ≤ n :

|1 + kK|n−m ≤ |1 + kK|n ≤ ekKn = eKtn

where we introduced the total integration time from 0 to n as tn = n k.
When dealing with multi-step methods or with PDEs the requirement needed
is in fact much less trivial. Going further one has

‖En‖ ≤ eKtn‖E0‖+ keKtn

n∑

m=1

τ(k) (4.33)

= eKtn‖E0‖+ kneKtn τ(k)

= eKtn(‖E0‖+ tn τ(k)).
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Since the truncation error τ(k) → 0 as k → 0, we found that for a fixed
finite integration time T , ‖EN‖ → 0 as k → 0, N → ∞ so the method is
convergent provided that E0 = 0 i.e. we ignore the effect of rounding error
for the initial condition.

If one integrates the usual differential equation (4.1) with a generic one-
step method in the form (4.20) as

un+1 = un + kΨ(un, un+1, tn, k) ,

convergence can be proved if some supplementary hypoteses on the function
Ψ (which is a functional of f) are satisfied.

For an explicit scheme in which Ψ = Ψ(un, tn, k) only we can ask for
Ψ Lipschitz countinuous in u, at least when k is restricted to a suitable
neighborhood of 0 and for any t in the considered interval, which accounts
in fact to ask

|Ψ(u, t, k) −Ψ(v, t, k)| ≤ K̄(k)|u− v|
with 0 ≤ K̄(k) ≤ K = const for k in a neighborhood of 0. This is enough
because we are interested in the limit k → 0. In this case the demonstration
of convergence follows exacly the same lines as for the explicit Euler method.

For a function f linear in v of the kind f(v, t) = λv+g(t) (λ independent
of time), in which Ψ itself is linear in each argument, convergence can be
worked out explicitely even in the implicit case by realizing that in most
cases the scheme can be written as

un+1 = un + kψ(k)un + γ(tn, tn+1) (4.34)

i.e. with a functional which is simply a multiplicative operator ψ(k) (suffi-
ciently differentiable) and the temporal dependence remains a source term.
For example the reader can check that for the trapezoidal scheme in the
scalar case,

ψ(k) =
λ

1− λk/2

γ(tn, tn+1) =
k

2(1− λk/2)
(g(tn) + g(tn + 1)) (4.35)

while for any Runge-Kutta the form (4.34) holds with a polynomial ψ. We
proceed to show how convergence requirement looks like in this simplified
case. Starting from a reformulation of the truncation error one has

vn+1 = vn + k ψ(k)vn + γ(tn, tn+1) + k τn+1 ,

then the global error can be written as

En+1 = un + k ψ(k)un + γ(tn, tn+1)−
[
vn + k ψ(k)vn + γ(tn, tn+1) + k τn+1

]

= (un − vn)− kτn+1 + k ψ(k)(un − vn)

= (1 + kψ(k))En − kτn+1
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and proceeding the same way as before one gets

‖En‖ ≤ |1 + kψ(k)|n‖E0‖+ k

n∑

m=1

|1 + kψ(k)|n−m τ(k). (4.36)

Convergence then holds if in the given time interval [0, T ], |1 + kψ(k)|n−m

is uniformly bounded by some constant (which may depend on the total
integration time T ), at least for k in a suitable neighborhood of 0. If

|1 + kψ(k)|n−m ≤ C(T ) ,m = 0 . . . N

we can write
‖En‖ ≤ C(T )‖E0‖+ TC(T )τ(k). (4.37)

For the Euler explicit scheme, we obtained in fact C(T ) = eKT .
Boundedness of |1 + kψ(k)|n−m is verified if ψ(k) is bounded as k → 0,

because in this case |1+ kψ(k)| can be bounded by a linear function of kind
|1 + kK| and we recover the explicit Euler case. But for consistency ψ(k)
must tend to λ as k → 0 (because the truncation error must tend to zero!),
so at least in this simple case convergence is ensured.

What we learned so far? That under assumptions that are quite rea-
sonable for common methods, consistent schemes are convergent since from
(4.37) the global error until a time T is bounded by a function C(T ) times
a term τ(k) which is at least O(k) and can go to 0 as k → 0 at a finite time
(one nevertheless discards the error at time 0 that depends on the floating-
point approximation on the initial condition). There is then some sort of
“stability” in amplifying the errors. This concept (referred as zero-stability
because relevant in the limit k → 0) will be more rigorously defined in the
case of multi-step methods (one-step methods being trivially zero-stable),
where we will learn that zero-stability + consistency imply convergence.

4.5 More on one-step methods

Up to now, to get in touch with numerical integration methods we played
around with Euler methods which are members of a more general class that
we already mentioned the so-called one-step methods. The framework is
simple: we advance the method from time tn to tn+1 with a given algorithm.

We already saw three examples: backward/forward Euler and the trape-
zoidal rule. Well, basically if we restrict ourselves only to the use of un,
f(un, tn) and f(un+1, tn+1) as our available 8 information for determining
un+1 we cannot do much better that recover these three old friends. Why
? Let’s have a look to what the method of undetermined coefficients has to
say about this.

8If the method is implicit, i.e. involving f(un+1, tn+1), some extra work is of course
needed.
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Regarding the information that we have we might wan to try a method
of the following type

un+1 = a un + k
[
b f(un, tn) + c f(un+1, tn+1)

]
, (4.38)

where a, b and c are unknowns. To determine these coefficients we proceed
as usual by inserting polynomials of successive degree for v(t) in Eq. (4.38)
until we have 3 (linear) equations. If we chose to insert 1, t− tn and (t− tn)2
we obtain the three following equations







a = 1
b+ c = 1
2 b = 1

, (4.39)

whose solution is obvious.
We could have inserted only the first two polynomials. In that case, we

use all the information but we simply do not insure the largest order for
the method. This is of course unwise, but let’s write down in this case the
numerical methods we obtain

un+1 = un + k
[
α f(un, tn) + (1− α) f(un+1, tn+1)

]
, (4.40)

for α ∈ R.
This set of methods clearly includes the Eulers’ as expected. For α 6= 1

2 ,
the method is only first order 9, so we better used Euler methods anyway.
The cost of evaluating f two times for gaining nothing is not the best idea
we could have. For α = 1

2 we recover the trapezoidal rule.
Basically, that is it. We cannot do better than order 2 with the provided

information. However, it is legal 10-indeed a good idea-to generate more

information. For instance, we could

1. try and evaluate f at carefully selected times t ∈ [tn, tn+1] and mixed
this up to cook up a higher order method. Doing so, we obtain the
Runge-Kutta method class.

2. f being the derivative of v, we could compute derivative of v of suc-
cessive orders and add it to our recipe and obtain the Taylor series

method.

4.5.1 Taylor series methods

Let’s consider v(tn+1) and develop it around tn, we obtain

v(tn+1) = v(tn) + k v̇(tn) +
k2

2
v̈(tn) +O

(
k3
)
,

= vn + k f(vn, tn) +
k2

2
v̈(tn) +O

(
k3
)
. (4.41)

9The method of undetermined coefficient already gives us this information but if you
are not convince it is time for you to play with Taylor expansions.

10At least, in Europe at the time of this writing . . .
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This could be our source of inspiration for our numerical method, using
the following algorithm

un+1 = un + k f(un, tn) , (4.42)

directly inspired from Eq. (4.41). Eq. (4.42) is the forward Euler method.
What is the error we make by using Eq. (4.42) ? If we are interested in

the one-step error we just have to substract Eq. (4.41) from Eq. (4.42) to
obtain

en+1 = −k
2

2
v̈(tn) +O

(
k3
)
, (4.43)

remembering that we assume the problem is solved exactly at t = tn,
i.e. vn = un.

So basically we Taylor expand our solution around t = tn up to the
desired order, say p, and the truncation error is O

(
kp+1

)
, i.e. the method is

order p. So this is an easy way to obtain a higher order method.
Let’s generalise the process. We have

v(tn+1) =

p
∑

l=0

1

l!
v(l)(tn) k

l +O
(
kp+1

)
. (4.44)

We must now remember that v̇(t) = f (v(t), t). Consequently, we have
also v̈(t) = f ∂f

∂v + ∂f
∂t and in general we have

v(l+1)(t) =

(

f
∂

∂v
+
∂

∂t

)l

f . (4.45)

Eq. (4.44) together with Eq. (4.45) suggests the following order pmethod

un+1 = un +

p
∑

l=0

1

(l + 1)!

(

f
∂

∂v
+
∂

∂t

)l

f(un, tn) k
l+1 . (4.46)

With the above method we can generate a one-step method with the
order of our choice. However, there are a few drawback to this procedure.
First, we must evaluate numerically the values of the derivatives of f and
this can be a costly computation. Second, we do not have necessarily the ex-
pressions of these derivative. For instance, f can be the results of a computer
program that cannot be expressed in term of usual mathematical functions.
In that case we would need to estimate the derivatives numerically, intro-
ducing a new source of error. Third, The method depends explicitly on f :
change f and the numerical method is different. We do not want this prop-
erty because usually we will call a C (or whatever) function from a library
to solve our equation with an arbitrary f . With the method depicted in
Eq. (4.46) that would mean to either being able to do formal derivation or
at least estimate them numerically.
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Perhaps we could do better by using the values of f(v(t), t) evaluated for
some selected times t and recover the terms in the development of Eq. (4.46)
up to the desired order. This leads us to the next section about Runge-Kutta

methods.

4.5.2 Runge-Kutta methods

Runge Kutta (RK) methods fall in the category of explicit one-step methods,
and they can be considered a “natural” extension of the simple explicit Euler.
Before we start, let’s take an example to motivate the RK methods.

With Euler methods, either explicit or implicit, we use the value of the
derivative at tn or tn+1 which gives us an order 1 method. It is too bad we
do not have access to the derivative just in the middle of this time interval
because with this centered difference we could hope to obtain a second order
method. We do not have this value but perhaps we could make a guess.
First, using forward Euler we estimate the value of v in the middle of the
interval. Let’s call this estimation ũ, we thus have

ũ = un +
k

2
f(un, tn) . (4.47)

Then, we simply use the ũ value to do our step like this

un+1 = un + k f

(

ũ, tn +
k

2

)

. (4.48)

We are not trough yet because we need to check that the method de-
scribed by Eq. (4.47) and (4.48) gives a consistent method and with an order
at least 2, gaining something with respect to Euler methods.

To simplify the algebra, let’s assume that the ODE is autonomous (i.e. f
does not depend on t). The truncation error is then

τn+1 =
v(tn+1)− v(tn)

k
︸ ︷︷ ︸

1

− f

(

v(tn) +
1

2
k f(v(tn))

)

︸ ︷︷ ︸

2

. (4.49)

The term 1 is easy to deal with, we have

1 = v′(tn) +
k

2
v′′(tn) +

k2

6
v′′′(tn) +O

(
k3
)
. (4.50)

For term 2 we have

2 = f (v(tn)) +
k

2
f (v(tn)) fv (v(tn))

+
k2

8
f2 (v(tn)) fvv (v(tn)) +O

(
k3
)
, (4.51)
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where the partial derivative of f respect to v is noted fv.

Now, remembering that we have v′′(t) = f ((v(t)) fv (v(t)) and substrat-
ing 1 from 2 we obtain finally

τn+1 =

[
1

6
v′′′(tn)−

1

8
f2 fvv

]

k2

=
1

24

[
f2 fvv + 4 f f2v

]
k2 +O

(
k3
)
, (4.52)

where we omitted the dependence of f for clarity and where we used the
relation v′′′(tn) = f f2v + f2 fvv.

We thus have τn+1 = O
(
k2
)
and obtained an order two one-step method!

The price to pay is modest. We must proceed in several stages (here two)
and evaluate f many times but of course we expected that: no pain, no

gain 11.

Now, it is time to generalise the procedure. Let’s consider again the
usual equation (4.1) v̇(t) = f(v(t), t). Explicit Euler consists in estimating
the value of the function un+1 at time tn+1 = tn + k by adding to the value
un the quantity kf(un, tn), i.e. the linear increment obtained by replacing
the true function by the straight line built with the value of the derivative
at (un, tn).

RK methods are more sophisticated in that they use successive esti-
mates of the derivative at intermediate times ti ∈ [tn, tn+1] to build a final
approximation for un+1 by linearly combining these estimates.

Proceeding as in the above order 2 example, we start first from the usual
(Euler) approximation of the increment un+1 − un, which we call J1 :

J1 = kf(un, tn).

We then consider the derivative f(v(t), t) at some intermediate time t =
tn + c2k ≤ tn + k (c2 ≤ 1) by taking some estimation for the value of v
at such time. We use the previously calculated J1 to estimate such value,
i.e. v(tn + c2k) ≈ un + c2J1 from which f(v(t), t) ≈ f(un + c2J1, tn + c2k).

We now use this other estimation for the derivative to calculate another
approximation for the increment like this,

J2 = kf(un + c2J1, tn + c2k) .

So we ended up with two possible increments J1 and J2, and we can use
both to calculate some estimation for v(t) at some other intermediate time
t = tn + c3k. We use J1 for a fraction of interval a31 and J2 for another
fraction a32, in such a way that c3 = a31+a32 (a31 and a32 are not necessarily

11Ages ago, I was in a basketball summer camp and we had this on our tees together
with go hard or go home :-) But hey, this is not a strict recommendation: we’re human
beings not machines . . .
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positive but for their sum 0 ≤ c3 ≤ 1). So v(tn + c3k) ≈ un + a31J1 + a32J2
and we use this value to calculate a third increment

J3 = kf(un + a31J1 + a32J2) .

Now with three increments we can estimate another value for v(t) at
the intermediate time t = tn + c4k such that c4 = a41 + a42 + a43, as
v(t) ≈ un + a41J1 + a42J2 + a42J3 and so on. Finally, the value un+1 results
form a linear combination of all the Js, i.e.

un+1 = un + k

p
∑

l=1

blJl , (4.53)

where the formulas for the Js can be formally written as

J1 = kf(un, tn)

Ji = kf
(

un + k

i−1∑

l=1

ailJl, tn + cik
)

for i = 2 · · · p , (4.54)

and we require ci =
∑i−1

l=1 ail. This is the generic formula for a p-stage RK
method.

It is interesting to note that if one blindly starts with formulas (4.53)-
(4.54), consistency of the scheme alone imposes the constraint ci =

∑i−1
l=1 ail

even if no formal relationship between the intermediate times is imposed.
The coefficients of the RK methods are calculated by imposing the order

of the scheme, i.e. the terms in the Taylor expansion of Eq.(4.53) and (4.54)
must be identical to their Taylor series counterparts from Eq. (4.46). The
constraints imposed by identifying terms in both expansion does not com-
pletely determine the RK coefficients, and one have the freedom of imposing
supplementary requirements. This is useful for example to minimise the fac-
tor in front of the truncation error.

Do not think it is and easy business: the calculation are unfortunately
quite involved 12 we refer to Ralston & Rabinowitz (2001) for more details.
Do not further assume that a p-stage RK method gives you necessarily a p
order method. This is only true for p ≤ 3 and for p ≥ 4 we only have the
general results that the number of stages is greater or equal to the order.

4.6 A first look at numerical instabilities

Let’s consider now a simple ODE that will be one of our favourite test case
for numerical integration methods

v̇(t) = −αv(t) with (4.55)

v(0) = v0 , (4.56)

12Try to find all the order 3 RK methods and their truncation error and you will
understand . . .
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where v0 is the “initial” value and α is a positive constant.
The solution to Eq. (4.55) is v(t) = v0 e−α t and we expect from any good

numerical integration method to approach this solution as close as we want.
We already know for the Euler method that it is the case when k → 0 but
we might wonder what is going on when k 6= 0. Indeed, we have shown in
the previous section that if k → 0 the Euler method is convergent. We are
facing now a different kind of problem. k is fixed as it should be in the real
world and t→ ∞. In this situation we want k to be as large as possible for a
prescribed precision because we want our program to go as fast as possible.
A small k value means a large number of integration steps and thus an
increasing computing time : we do not want to put too small a value of k.
Can we use any k value without jumping into troubles ? Unfortunately, we
cannot.

4.6.1 Explicit method

For the particular case of the Euler’s method we can actually obtain the
numerical solution explicitly. In this particular case the Euler method is
given by

un+1 − un

k
= −αk un , (4.57)

which is a recurence relation between the un that can be solved explicitly

un = (1− α k)n u0 , (4.58)

where u0 is the numerical approximation to v0. Remember that we can have
u0 6= v0 (e.g. if v0 = 1

10 it cannot be represented exactly, see chapter 2).

We have

∣
∣
∣
∣

un+1

un

∣
∣
∣
∣
= |1− αk| and consequently we have two different cases

according to the value of 1− αk






if 1− αk > 0 then
∣
∣
∣
un+1

un

∣
∣
∣ = 1− αk

if 1− αk < 0 then
∣
∣
∣
un+1

un

∣
∣
∣ = α k − 1

. (4.59)

We know that in any case the numerical solution must be bounded
because the actual solution v(t) is. Consequently, we must require that
∣
∣
∣
un+1

un

∣
∣
∣ < 1.

When 1−α k > 0 this is ok because αk is positive and 1−αk is always
lower than 1. So we do not have any problem whenever our step verifies
k < 1

α .
When 1−α k < 0, we must require k < 2

α for our numerical solutions to

be bounded. However, since we also have un+1

un = 1 − α k we see that even

if this condition on k is fulfilled, un+1

un is negative meaning that the values
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un are actually oscillating ! As far as αk − 1 is lower that 1 the un do not
diverge to ∞ but still we are facing an ugly problem which definitely is not
reflected by the actual behaviour of the solution v(t).

Let’s summarise our results. For the Euler explicit method we have

1. If k < 1
α , the u

n values are bounded,

2. if 1
α < k < 2

α , the u
n values are bounded but they are oscillating and

the numerical results have no usefull purpose,

3. if k > 2
α we are in the worse situation where the un values diverge to

∞ while they are oscillating !

It is time to introduce the notion of absolute stability. When k is fixed
and t→ ∞ if the numerical solution of the test case expressed by Eq. (4.57)
remains bounded the numerical method under consideration is then said
to be absolutely stable. Note that for explicit Euler this is achieved when
k < 2

α . For 1
α < k < 2

α , though the method is said to be absolutely
stable, the numerical results are not useful! This is just a subtlety that one
must keep in mind: our numerical results might remain bounded as they
should and be crappy at the same time. Stability (of any kind) is extremely

important for a numerical method. Unfortunately, even if it will be our main
concern there could be other type of difficulties beyond stability.

4.6.2 Implicit method

The Euler implicit method can be written like this

un+1 − un

k
= −αk un+1 . (4.60)

We can solve this equation right away to obtain

un =

(
1

1 + α k

)n

u0 . (4.61)

We remark that
∣
∣
∣
un+1

un

∣
∣
∣ =

∣
∣
∣

1
1+αk

∣
∣
∣ is always lower than 1 since 1+αk > 1

for positive k. Consequently, the numerical values un for a fixed k will
be unconditionally bounded. The Euler implicit method is unconditionally
absolutely stable. Note also that since 1+αk > 0 we cannot have oscillating
behaviour in our results.

This illustrates the advantage of the implicit methods with respect to
the explicit ones. However there is a price to this unconditional stability. If
the function f is not linear like in our test-case, and in many real situations
it is not, we have to solve for a non-linear equation to obtain un+1 out of un

even for the simple Euler method.
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As a final warning, keep in mind that stability means that truncation
errors are not amplified without bounds, but they may be large per se! In
other words, accuracy of the scheme, i.e. the magnitude of the discrepancy
between the true solution and the numerical one, is governed by the trunca-
tion (or one-step) error, which in turns depends on the time step: even if the
scheme is stable, using a too large time step may cause a too large error and
a useless computation! So at the end remind that without absolute stability
the computation may become evidently useless after a few time steps, but
do not be too overconfident on it.

4.7 Multi-step methods: zero-stability and con-

vergenge

For a generic one-step method we found in Eq. (4.36) a bound containing
an amplification factor ≈ |1 + kK̄|n−m, 1 ≤ m ≤ n which turns out to be
bounded as k → 0, n → ∞ since it goes like eKT . Imagine instead to have
an amplification factor like |2 + kK̄|n−m: this is clearly unbounded in the
same limit. To be clear, because we are dealing with upper bounds, this do
not yet prevents the global error to converge, but it can at least cast some
doubts about it.

This observation leads as to analyze more carefully the convergence
of more schemes more complex then one-step methods. Let’s talk about
multi-step methods remaining for simplicity in the linear case (4.1) v̇(t) =
f (v(t), t). A multi-step linear method is a recipe that allows to get un+1

using the previous p + 1 values un, un−1 . . .un−p, which in particular can
be written as

un+1 +

p
∑

r=0

αru
n−r = kλ

(

β−1u
n+1 +

p
∑

r=0

βru
n−r

)

(4.62)

OR WHATEVER ... FOLLOWS AN ”HANDWAWED” PROOF OF THE
THEOREM CONSISTENCY + STABILITY -¿ CONVERGENCE
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Chapter 5

Partial differential equations:

the basics

5.1 Introduction

Solving partial differential equations (PDEs) is one of the most ubiquitous
problems an (astro-) physicist (or mathematician, or whatever individual
pretending doing science) must face. PDEs are a large universe, and in these
notes we will present just the most basic examples and methods related to
the most common problems. At lists for some classes of problems PDEs can
be viewed as a collection of ODEs, but this is only partially true because
switching from ODEs to PDEs introduces some qualitatively new difficulties.
This is specially true for what concerns one of the most misunderstood,
controversial and useful concepts, the one of stability. We will try to explain
all this in the most practical and useful way.

5.1.1 Some mathematical properties

Basic classification: hyperbolic, parabolic, elliptic.

Initial-value problems / boundary value problems or both

Linear and nonlinear equations

TO BE DONE

5.2 An initial-value problem: the advection equa-

tion

Let v(x, t) be a function of time and one space variable, with

x ∈ [0, L]

t ∈ [0, T ], (possibly T → ∞)

47
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which satisfies the advection equation:

∂tv + α∂xv = 0 , α = const (5.1)

We will consider the following initial-value problem: let assign an initial
condition (initial field profile) v(x, 0) ≡ v0(x) and determine the field v(x, t)
at any time t.

For this particularly simple equation we know the exact solution:

v(x, t) = v0(x− αt) (5.2)

which means that the initial profile is simply displaced (advected) toward
the right if α > 0 or the left if α < 0, with an advection velocity α, like in
Fig. (5.1). In the following, if not otherwise specified, we will always take
for simplicity α > 0.

v0(x) v(x)=v0(x−at)

x − at x

Figure 5.1: Evolution of an initial profile v0(x) obeying Eq. (5.1)

From the numerical point of view, the problem of looking for a solu-
tion of this equation is not so different from what we already examined for
ODEs: look for an approximate solution u which can be determined with a
deterministic algorithm in a finite number of steps. What changes here is
just the number of variables and the fact that the initial condition is not a
collection of numbers but a function, i.e. an infinite collection of numbers
over which a supplementary (differential) operator is applied.

In the following of this chapter, we will use the advection equation as
the main example to illustrate the basic concepts and pitfalls associated to
the resolution of PDEs.

5.3 The most intuitive approach: finite differences

We can proceed on the same line as we did for ODEs, building a discretiza-
tion over suitable intervals both in time and space, and approximate the dif-
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ferential operators by their finite differences counterparts (finite differences

method). In fact it is quite common to stay with a finite-differences-like dis-
cretization for the time, while for what concerns the space there are many
possible options, the most common being finite differences, finite volumes,
finite elements, spectral methods (i.e. expansion over a basis of functions)
. . . . The simplest (or more intuitive) method is nevertheless finite differ-
ences, while in “real” problems the choice of the best treatment for the
spatial variable(s) is often a compromise between different needs: dealing
with simple or awkward boundary conditions (i.e. conditions the function
v must satisfy on the boundaries of the spatial domain), precision, rapidity,
discretization over complicated geometries, and last but not least simplicity
of coding.

Let us proceed then with finite differences. Build a discretization (grid)
of the space and time intervals:

xj = j∆x j = 0, 1, . . . M ∆x = L/M ≡ h (5.3)

tn = n∆t n = 0, 1, . . . N (5.4)

∆x ≡ h is the mesh size, ∆t ≡ k is the time step. Discrete times and posi-
tions will be then indicated as xj , tn or simply j, n. We consider then a finite
collection of numbers: {unj }, j = 0 . . .M, n = 0 . . . T/k which approximate
the values of the exact solution v on the discrete grid: v(xj , tn) ≡ vnj ≈ unj .
We remind here the usual notation we use, by indicating with v the exact
solution and u the approximate one. Moreover, we place time indices as su-
perscripts, and space indices as subscript (this was the reason why in ODEs
we used the weird superscript notation for the time).

We can then replace the derivatives with their finite differences approxi-
mations, which will be exact in the limits h→ 0, k → 0. For example when
using backward differences for both time and space we get

(∂tv)
n
j ≈

un+1
j − unj

k
(5.5)

for the time derivative, and

(∂xv)
n
j ≈

unj − unj−1

h
(5.6)

for the space derivative. Equation (5.1) will be then replaced by the approx-
imation on the grid:

un+1
j − unj

k
+ α

unj − unj−1

h
= 0. (5.7)

which can be rewritten as

un+1
j = unj

(

1− α
k

h

)

unj + α
k

h
unj−1. (5.8)
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This is our numerical scheme, i.e. a closed formula that with a finite number
of operations allows the calculation of all {uj} at the instant tn+1 once the
corresponding set is known at the instant tn. It is then suitable for being
programmed in a computer to solve the initial-value problem .

For what concerns the time advancing, we use the same terminology as
for ODEs: this scheme is then called explicit Euler in time. Moreover, using
the one-sided finite differences approximation (5.6) for the space derivative
qualifies the scheme as upwind (if α > 0) in space. The term upwind (which
is restricted to equations that describe the displacement of a profile), means
that the approximate solution un+1

j at position j is built using the informa-
tion at positions j, j − 1, i.e. on the side from which the signal is coming
(since the solution profile propagates from left to right for α > 0). This way
of doing is far from being innocent and has a deep influence on the stability
of the scheme as it will be seen in the following.

In general an explicit Euler scheme for Eq. (5.1) reads

un+1
j − unj

k
= Φ({un})j (5.9)

where Φ is a generic function on the collection of finite values {unj }, j =
0 . . .M, taken all at the same time tn that approximates the differential
operator −α∂xv. We can then use any possible way of approximating the
spatial derivative using the function values on the grid points, and this will
be a perfectly legitimate as far as the derivative is reproduced when the
mesh size is reduced. For example, other possible approximations for the
space derivatives can be:

(∂xv)
n
j ≈

unj+1 − unj
h

(5.10)

(one-sided downwind finite differences, which is just the approximation that
searches on the side to which the signal is going) or

(∂xv)
n
j ≈

unj+1 − unj−1

2h
(5.11)

(centered finite differences)
and obtain this way the two following explicit Euler schemes:

un+1
j =

(

1 + α
k

h

)

unj − α
k

h
unj+1 (5.12)

(Euler downwind)
or

un+1
j = unj − α

k

2h
(unj+1 − unj−1). (5.13)

(Euler centered)
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If we do more complicated things on the spatial differential operator
(i.e. expanding the spatial profile over a function basis and then using
the coefficients of the expansion instead of the grid values) this will not
be anymore a finite differences schemes in space, but it will still be Euler
explicit in time.

To be more general, we can (at least in principle) combine any time dis-
cretization with any space discretization, for example we can do an implicit

Euler in time by writing generically:

un+1
j − unj

k
= Φ({un+1})j (5.14)

where the approximation for the differential operator on the rhs is is taken at
time tn+1 instead of at tn, or building a trapezoidal Cranck-Nicolson scheme
as

un+1
j − unj

k
=

1

2

(
Φ({un})j +Φ({un+1})j

)
. (5.15)

which combines approximations for the differential operator at both times
tn, tn+1.

Just to give a less trivial example one can take the leap-frog approxima-
tion for the time derivative and combine it with a centered spatial approxi-
mation:

un+1
j − un−1

j

2k
+ α

unj+1 − unj−1

2h
= 0. (5.16)

(Leap-frog centered)

All these possibilities are not equivalent and lead to different numerical
results (which can be really bad!!!), some being stable, some unstable, some
very precise and some less. In the following we will see why some possibilities
are admissible and some are not.

5.3.1 PDEs like vector ODEs

Take the explicit Euler upwind scheme written as in (5.8).

un+1
j = (1− p)unj + punj−1 (5.17)

where here and in the following we introduced the fundamental parameter
for the numerical discretization of the advection equation:

p ≡ α
k

h
. (5.18)

Putting aside for the moment what happens at the boundaries j = 0,
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j =M we can write in in matrix form :









. . .

un+1
j−1

un+1
j

un+1
j+1

. . .










=









. . .
. . . p (1− p) 0 0 0 . . .
. . . 0 p (1− p) 0 0 . . .
. . . 0 0 p (1− p) 0 . . .

. . .

















. . .
unj−1

unj
unj+1

. . .









(5.19)

which means that the scheme can be actually be written as a vector ODE

by grouping the collections of the values {unj }, j = 0 . . .M into a vector un:

un+1 = Aun (5.20)

where the matrix A (M + 1)× (M + 1) is the one written in (5.19)
In fact any finite differences scheme for PDEs can be actually written

like a vector ODE in time where the finite number of function values in space
constitute the vector over which the ODE operates. Given a generic one-
step time-advancing scheme and a generic spatial discretization for which
we have the general formula

un+1
j = unj + kΨ

(
{un}, {un+1}, tn, k, h

)

j
(5.21)

(Ψ being some operator whose form depends on the approach used to dis-
cretize the spatial differential ones, and the scheme being explicit if the
dependence on the time tn+1 on the rhs is dropped), it can be cast in vector
form :

un+1 = un + kΨ(un,un+1, tn, k, h) (5.22)

where Ψ denotes the same operator by acting on the vector in full. From
a formal point of view, the introduction of multistep methods does not add
any supplementary problem.

5.3.2 Examples of implicit schemes

We saw that for ODEs “implicit scheme” means “in a form that is not
already explicitly solved”, and for a scalar linear equation this is pretty
trivial. For PDEs the idea is the same, but in the best case we are led to
the resolution of a linear system. Let’s take for example the explicit Euler
upwind scheme (5.8). We can write its implicit version by taking the same
approximation for the space derivative but with function values at time tn+1

instead of at tn, i.e.:

(∂xv)
n
j ≈

un+1
j − un+1

j−1

h
(5.23)

and build the following scheme:

un+1
j − unj

k
+ α

un+1
j − un+1

j−1

h
= 0. (5.24)
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i.e.

(1 + p)un+1
j − pun+1

j−1 = unj (5.25)

which can be cast as a vector equation :

Bun+1 = un (5.26)

where the matrix A is given by

B =









. . .
. . . −p (1 + p) 0 0 0 . . .
. . . 0 −p (1 + p) 0 0 . . .
. . . 0 0 −p (1 + p) 0 . . .

. . .









. (5.27)

To get un+1 from un one is then led to solve a linear system. In general a
(linear) one-step implicit scheme for a linear equation will read as

Bun+1 = Aun + c(tn, k) (5.28)

with two matrices A and B and a possible time-dependent source c (which
can depend on some intermediate time between tn, tn+1). The source struc-
ture may be evident from the equation itself or contain information from
the boundary conditions as will be seen in the following Section. As a fur-
ther example, the Cranck-Nicolson scheme for Eq. (5.1) with a centered
approximation for the spatial derivative, i.e. :

un+1
j − unj

k
+
α

2

(

un+1
j+1 − un+1

j−1

2h
+
unj+1 − unj−1

2h

)

= 0 (5.29)

in vector form reads as (5.28) with A and B given by

A =









. . .
. . . p/4 1 −p/4 0 0 . . .
. . . 0 p/4 1 −p/4 0 . . .
. . . 0 0 p/4 1 −p/4 . . .

. . .









(5.30)

B =









. . .
. . . −p/4 1 p/4 0 0 . . .
. . . 0 −p/4 1 p/4 0 . . .
. . . 0 0 −p/4 1 p/4 . . .

. . .









(5.31)

and a vector c uniquely dependent on the boundary conditions as we will
see in the following.
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If the equation is not linear (as all “real” equations of mathematical
physics are), the problem is much more complex because instead of solv-
ing a linear system we end up with the resolution of a vector algebraic
nonlinear equations, which involves the use of some iterative methods (i.e.
Newton-Raphson or something similar), in which the imposed tolerance on
the converge level introduces some supplementary error. So why bother with
implicit schemes? Because like in ODEs explicit schemes are in some cases
unstable or need unacceptable small time steps, or do not have the required
conservation properties (i.e. momentum or energy) that we may want to
be preserved by the numerics. But because implicit schemes need always
some more computational work, and even when stable you cannot usually
increase the timestep without bounds (because the scheme, even if stable,
will be too inaccurate due to a too large truncation error), the need for an
implicit scheme must be carefully evaluated. So depending on the case it
can be better an explicit scheme which needs a small time step instead of
an unconditionally stable implicit one.

5.4 Boundary conditions

To be considered a closed algorithm, a formula of the kind (5.8) which
couples different space indices j, j − 1 (or more generally (5.21) including
its vector counterpart (5.22) ), must be supplemented by some treatment
close to the “boundaries” where the general formula contains meaningless
indices, j < 0 or j > M . While a generic initial-value ODE needs just
an initial condition, for solving a PDE we need such a condition (in the
form u0j = v0(xj) ∀ j) but we must also know how the profile “ends” at the
geometric boundaries where the differential operators are well defined only
on one side. In the discrete representation this translates to the impossibility
of blindly using the finite difference approximations for the space derivatives.

Writing from example Eq. (5.8) explicitly:

un+1
0 = (1− p)un0 + pun−1

un+1
1 = (1− p)un1 + pun0

. . .

un+1
j−1 = (1− p)unj−1 + punj−2

un+1
j = (1− p)unj + punj−1

un+1
j+1 = (1− p)unj+1 + punj

. . .

un+1
M−1 = (1− p)unM−1 + punM−2

un+1
M = (1− p)unM + punM−1 (5.32)

it appears that the equation in the first line has no meaning because it con-
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tains the value un−1, which does not exist because there is no point x−1. One
has to introduce then some “closures”, in the form of boundary conditions

(b.c). These are not specific to the numerical discretization, since in general
any PDE (5.1) needs some b.c. in order to get a unique solution. Take for
example the displacement of a vibrating string guitar from the rest position,
which is also described by some PDE. The vibration will be clearly different
if we prescribed fixed both ends or if one of the ends is free or constrained to
some special trajectory. So first of all we need to ask: what are my physical

b.c.? Fixed ends, moving ends in some specified way, or something else?
In the case of our advection equation, let’s remind that the exact solution
is a profile propagating from left to right if α > 0. So it seems a little bit
strange to prescribe the boundaries, because they should evolve “automati-
cally” with the natural evolution of the profile1. Something “innocent” we
can do is prescribing for example periodic b.c., i.e. v(x, tn) = v(x + L, tn).
In particular this implies in the numerics that un0 = unM∀n, so the value
unM does need to be calculated and the number of coupled equations reduce
from M +1 to M . Moreover, “meaningless” values like un−1 are replaced by
periodicity by some others, i.e. un−1 = unM−1.

Once this is done, the system (5.32) in vector form reads :

















un+1

0

un+1

1

. . .
un+1

j−1

un+1

j

un+1

j+1

. . .
un+1

M−2

un+1

M−1

















=

















(1 − p) 0 . . . 0 0 0 . . . 0 p
p (1− p) . . . 0 0 0 . . . 0 0

. . .
0 0 . . . (1− p) 0 0 . . . 0 0
0 0 . . . p (1 − p) 0 . . . 0 0
0 0 . . . 0 p (1− p) . . . 0 0

. . .
0 0 . . . 0 0 0 . . . (1− p) 0
0 0 . . . 0 0 0 . . . p (1 − p)

































un0
un1
. . .
unj−1

unj
unj+1

. . .
unM−2

unM−1

















(5.33)

the relevant matrix being non-zero in the main diagonal, in the strip below
and in the right-upper corner (do not miss that!!!).

The reader can check that when employing the centered approximation
(5.13) for the space derivative, the corresponding matrix is tridiagonal with

1in fact the case of advection equation is somehow special for what concerns b.c.: for
other equations like the diffusion or the wave equation it is more natural to impose b.c
without resorting to infer some information from the exact solution that you are not

supposed to know when numerically integrate
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corners :

















1 −p/2 0 . . . 0 0 0 . . . 0 p/2
p/2 1 −p/2 . . . 0 0 0 . . . 0 0

. . .
0 0 0 . . . 1 −p/2 0 . . . 0 0
0 0 0 . . . p/2 1 −p/2 . . . 0 0
0 0 0 . . . 0 p/2 1 . . . 0 0

. . .
0 0 0 . . . 0 0 0 . . . 1 −p/2

−p/2 0 0 . . . 0 0 0 . . . p/2 1

















(5.34)

(we will nevertheless discover that the explicit Euler scheme is unstable with
such a centered approximation, and in practice we need an implicit scheme).

Even not meaningful, we can nevertheless look at our schemes in case we
want to impose fixed boundary conditions. In general, this implies that the
values of v (and henceforth u) at both ends remain fixed to specified values,
i.e.:

un0 = γa ∀n (5.35)

unM = γb ∀n

which means that the first and the last equations of (5.32) must not be
integrated, because their result is imposed from the exterior. Moreover, in
the second equation of (5.32) the value un0 must be replaced by γa at any
time. The number of simultaneous equations to be solved reduces then from
M+1 to M−1, and with an upwind space discretization we write in matrix
form :





























un+1
0

un+1
1

. . .

un+1
j−1

un+1
j

un+1
j+1

. . .

un+1
M−2

un+1
M−1





























=





























(1− p) 0 . . . 0 0 0 . . . 0 0
p (1− p) . . . 0 0 0 . . . 0 0

. . .

0 0 . . . (1− p) 0 0 . . . 0 0
0 0 . . . p (1− p) 0 . . . 0 0
0 0 . . . 0 p (1− p) . . . 0 0

. . .

0 0 . . . 0 0 0 . . . (1− p) 0
0 0 . . . 0 0 0 . . . p (1− p)

























































un
0

un
1

. . .

un
j−1

un
j

un
j+1

. . .

un
M−2

un
M−1





























+





























pγa
0
. . .

0
0
0
. . .

0
0





























(5.36)

i.e. the non-zero value in the upper right corner is now 0 and the left b.c.
γa appears like a source in the rhs. Funny enough, the right b.c. does not
appear at all and can be dropped. From the numerical point of view (but
not really from the physical one) this can be understood by noticing that
this upwind scheme needs values coming form the left in approximating the
derivative, so it is reasonable that the rightmost value is never needed. The
resulting matrix is diagonal with a lower band. Now when employing the
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centered approximation (5.13) for the space derivative the scheme reads :



















un+1

0

un+1

1

un+1

2

. . .
un+1

j−1

un+1

j

un+1

j+1

. . .
un+1

M−2

un+1

M−1




















=



















1 −p/2 0 . . . 0 0 0 . . . 0 0
p/2 1 −p/2 . . . 0 0 0 . . . 0 0
0 p/2 1 . . . 0 0 0 . . . 0 0

. . .
0 0 0 . . . 1 −p/2 0 . . . 0 0
0 0 0 . . . p/2 1 −p/2 . . . 0 0
0 0 0 . . . 0 p/2 1 . . . 0 0

. . .
0 0 0 . . . 0 0 0 . . . 1 −p/2
0 0 0 . . . 0 0 0 . . . p/2 1





































un0
un1
un2
. . .
unj−1

unj
unj+1

. . .
un+1

M−2

unM−1



















+



















p
2
γa
0
0
. . .
0
0
0
. . .
0

− p

2
γb



















(5.37)

where the matrix is purely tridiagonal and now both boundary conditions
enter (as a source) into the numerical scheme.

The reader at this point must realize that something is going wrong.
How is possible that according to the numerical scheme we adopt, we use
one or both (or possibly none) values at the border? In fact this is not
possible, which means that some schemes are good for dealing with borders
and some other are not. Which is good depends in turn on the properties of
the equation itself. In fact the advection equation is a member of a general
class called hyperbolic systems. Loosely speaking, they are characterized
by a finite propagation speed (α in our case) in a given direction, which
are the propagation speed and direction of the information as well. As a
consequence, the solution v(x, t) at a given point and a given time depends
on the solution values v(x′, t′) at all previous times t′ < t but not at all
points in space, only at points x− αt′ < x′ < x for a given t′. This implies
that for α > 0, i.e. for a profile propagating to the right, the solution at a
given point is influenced by the previous solutions, but only at some points
on the left of the actual one. For this reason it is perfecly legal to set the
leftmost boundary but not the rightmost, and all schemes which need to fix
a rightmost boundary are doomed to fail (unless you are doing periodic b.c.
but this is another story).

ALL THE PAGE IS BEING REPHRASED

5.5 Truncation errors and consistency

So far we approximated our equation by taking some finite differences on a
discrete space-time grid instead of differential operators. Sounds good... but
is there a way to know whether we are doing well, or even how much error
we introduce with this procedure? Well, since a PDE can be written as a
vector ODE, we can proceed as we did for ODEs. As a first measure of the
goodness of our approximation is the one-step error, given by the difference
between the evolution of the field driven by the true equation v(xn, tn) ≡ vnj
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and the one calculated with the numerical scheme. This difference will be
taken on one time step, i.e. on a time increment of k, taking care to assign
to the numerical solution from which we start the values of the continuous
exact solution on the spatial grid. In short, we impose unj = vnj and do one
step with both the exact equation and the numerical scheme.

Let us consider first the explicit Euler upwind (5.8):

un+1
j = (1− p)unj + punj−1. (5.38)

We write then the one-step error (from the step n to the step n+1 at point
xj) as:

en+1
j = un+1

j − vn+1
j (5.39)

under the condition unj = vnj .

Actually the error must be defined in some norm, e.g. L2 or L∞ (sup
norm) or you can even consider a collection of one-point problems and take
the norm |enj | at each point. We now proceed to evaluate now enj without
taking any norm, because the resulting expression can give supplementary
information beyond its magnitude (in particular the sign of e will be useful
later).

en+1
j = un+1

j − vn+1
j

=
[
(1− p)unj + punj−1

]
− v(xj , tn +∆t)

=

[

(1− p)vnj + p

(

vnj − hv′
n
j +

1

2
h2v′′

n
j +O(h3)

)]

−
(

vnj + kv̇nj +
1

2
k2v̈nj +O(k3)

)

= −k(v̇nj + αv′
n
j )−

1

2
k2(v̈nj − α

h

k
v′′

n
j ) + k(O(h2) +O(k2))

= −1

2
αk(αk − h)v′′

n
j + k(O(h2) +O(k2)) (5.40)

where we Taylor-expanded the function v (dots indicate time derivatives
and primes indicate space derivatives) and we used unj = vnj : only after

this substitution we are allowed to Taylor-expand in space and time the
function u, which is defined over a discrete grid and the notion of derivative
has no meaning for it. Moreover, we used the fact that v satisfies exactly
the equation, so v̇nj + αv′nj = 0 and differentiating the initial equation we

have v̈nj = α2v′′nj .
We stress that we never made use of the exact solution : the calculation

of the one-step error is in fact not based at all on the knowledge of the
solution, but only on the form of the equation.

If we used instead the explicit Euler downwind (5.12), the error have
been taken the form :

en+1 = −1

2
αk(αk + h)v′′

n
j + k(O(h2) +O(k2)). (5.41)
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In both cases the one-step error is k (O(k) +O(h)), the first term coming
from the time discretization and the second from the spatial one. Following
what we said for the ODEs, the scheme is then first order in time and
space, the extra power in k being absorbed because to reach a finite time
T we perform T/k time steps. This is typical of all initial-value problems
evolving from an initial condition: in this case a numerical scheme will
be p − th order in time and q − th order in space if the one-step error
is k (O(kp) +O(hq)) at leading order. Dividing by 2 the time step or the
mesh size has the consequence that the one-step precision is increased by
factors respectively 2p and 2q, being evident the interest of employing high-
order schemes. One must nevertheless carefully counterbalance the fact
that higher-order schemes need generally more computational work per step.
Moreover, in some conditions high-order schemes may actually introduce
some undesirable features in the solution, i.e. spurious oscillations2.

The form (5.42) is quite interesting, because it suggests that at leading
order the error is zero if αk = h exactly. So for PDEs in some cases we
can minimize the error not only the hard way, i.e. taking k, h as small
as possible, but being smarter and making a good combined choice for the
time step and the mesh size. This of course does not mean that the error is
exactly zero, but the leading contributions will come at the next order and
the method will be effectively of higher order (this procedure is not trivial
for complicated schemes though...).

Coming to the local truncation error τ , just for the sake of clarity we
write it down for both upwind (5.8) and downwind (5.12) Euler methods.
This is straightforward if we use the scheme in the form:

un+1
j − unj

k
+ α

unj − unj−1

k
= 0 (upwind)

un+1
j − unj

k
+ α

unj+1 − unj
k

= 0 (downwind)

from which the truncation errors come out immediately by plugging in the
exact solution:

τn+1 =
vn+1
j − vnj

k
+ α

vnj − vnj−1

k
(upwind)

τn+1 =
vn+1
j − vnj

k
+ α

vnj+1 − vnj
k

(downwind)

The use of the vector form results very convenient to highlight the formal
similarities between PDEs and ODEs. Consider a generic PDE of the form

2exactly in the same way as using polynomials of too high order for doing Lagrange
interpolation of a function: standard finite-differences schemes are in fact a sort of poly-
nomial interpolation of a function which is known only on a discrete set of points.
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∂tv = F (v, t) = 0 where F is a generic operator containing spatial deriva-
tives, and let’s suppose to have a generic scheme in vector form written as
for vector ODEs : (5.22) :

un+1 = un + kΨ(un,un+1, tn, k, h)

the one-step error is en+1 = un+1 − vn+1 under the condition un = vn,
while the truncation error is

τn+1 =
v(tn+1)− v(tn)

k
−Ψ

(
vn,vn+1, tn, k, h

)
.

For the consistency requirement we now take two limits: we require τ → 0
as k → 0, h → 0, and in this limit the usual relationship e ∼ −kτ holds.
Moreover, consistency implies Ψ (vn,vn, tn, 0,=) = F (vn, tn) formally as
for ODEs. We will be free of using the vector form or the pointwise form
according to which is most convenient for our purposes.

As a matter of example, all explicit Euler schemes we presented so far
(upwind, downwind, centered) are consistent since for the approximation of
the time derivative :

vn+1
j − vnj

k
=
vnj + kv̇nj + . . .− vnj

k
= v̇nj +O(k) → v̇nj for k → 0

while for the spatial derivatives :

vnj − vnj−1

h
=
vnj − vnj + hv′nj + . . .

h
= v′

n
j +O(h) → v′

n
j for h→ 0

vnj+1 − vnj
h

=
vnj + hv′nj + . . .− vnj

h
= v′

n
j +O(h) → v′

n
j for h→ 0

vnj+1 − vnj−1

2h
=
vnj + hv′nj + . . . − vnj + hv

′n
j + . . .

2h
= v′

n
j+O(h2) → v′

n
j for h→ 0

and in all these cases the local truncation error will reduce to :

τn+1
j = v̇nj + αv′

n
j + (O(kp) +O(hq)) → 0 for k → 0, h→ 0

5.6 Convergence and stability

At first it could seem that the issue of convergence and stability for PDEs
follows the same lines as for ODEs, leading to the same conclusions. This
is partially so and partially not so : the fact of having now two indepen-
dent variables k, h that can go to zero independently makes the matter a
bit more complicated, with the result that for PDEs zero-stability usually

cannot be established, even for one-step methods. But before proceeding
explaining this, we look at the notion of stability in a somehow rudimentary
and intuitive way by exploring what the one-step and truncation errors can
tell us besides consistency and order of the scheme.
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5.6.1 One-step error and stability : loose ties

As for ODEs, a numerical scheme for PDEs will be useful if stable. Loosely
speaking, stability means that the error on the solution will not be amplified
without control. The one-step error can be used as a first measure to under-
stand when this could happen or could not happen, and how not only the
time but the spatial discretization (and their coupling) bears an influence
on that. Consider as usual the advection equation ∂tv+α∂xv = 0 integrated
with the explicit Euler upwind scheme (5.8) (remember that p = αk/h)

un+1
j = (1− p)unj + punj−1

for which the one-step error at the dominant order is

en+1
j = un+1

j − vn+1
j ∼ −1

2
αk(αk − h)v′′

n
j (5.42)

Let us take for example a sin profile that according to the equation prop-
agates to the right (α > 0, and use e.g. periodic b.c.). If we choose the
space and time steps in such a way that αk > h (i.e. p > 0), the error e
will be positive where v′′ is negative, i.e. preferentially at the maxima of the
profile, while it will be negative at the minima. Now since by construction
unj = vnj , e > 0 implies un+1

j > vn+1
j , i.e. at tn+1 the numerical solution is be

larger than the exact one while at the previous time they were equal. In the
present case it happens at the profile maxima, while at the profile minima
since e < 0 the numerical solution will be smaller that the exact one. This
means that for p > 0 at each time step the numerical solution profile has

the tendency to “spread” with respect to the exact one. There are no upper
bounds to this spreading, and the numerical solution can grow to infinity as
time elapses : this is the typical unstable behavior. Incidentally, we say that
at the leading order the truncation error of the procedure is anti-dissipative.
If on the contrary αk < h (i.e. p < 0) the sign of e is just opposite, and
the numerical profile will tend to “shrink” with respect to the exact one.
This is in fact a stable behavior, because the deviation form the exact one
is bounded, as the numerical solution will eventually collapse to zero3. In
this case at leading order the truncation error is dissipative. The condition
for “stability” αk < h means that in one time step, the profile translates of
a quantity αk (remember that α is the advection velocity of the solution)
smaller than a mesh size h. This is known as CFL: Courant-Friedrichs-Lewy
condition, and essentially means that in one time step the profile must not

3this process could be considered as well a sort of instability, because in one’s mind any
systematic deviation can reasonably be thought as an unstable behavior. But semantically
instability is something that leads to an unbounded deviation, and moreover numerically
it is quite hard to obtain just a numerical solution that smoothly oscillates around the
exact one. Least but not last, instability in a machine usually lead to infinities very short,
while too much dissipation can be much more easily controlled.
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be advected by more than a mesh size. This way, since the approximation
on the spatial derivatives needs some information from the moving profile,
this approximation is not “mixed up” from one time step to the other due
to an insufficient resolution. This condition is relevant for upwind schemes,
in which - loosely speaking - at a point the numerics is able to get the
information from the solution coming towards this point.

One can consider that even if “stable”, a numerical solution that while
advecting the profile eventually dissipates it to zero is not so useful. This
is the problem of stable but dissipative schemes. We will learn that most
of the time a stable scheme is dissipative as well : this is acceptable if we
are able to control the dissipation level and stop the computation before
dissipating too much, which is part of the “numerical art”.

NUMERICAL EXAMPLES ... SOME GRAPHS.
Let us take now the explicit Euler downwind scheme (5.12)

un+1
j = (1 + p) unj − punj+1

for which the one-step error at the dominant order is

en+1
j = un+1

j − vn+1
j = −1

2
αk(αk + h)v′′

n
j (5.43)

In this case the coefficient in front of the second derivative is always negative,
and following the former discussion for a sin profile we are always in the
conditions of “instability”. This method is in fact unstable : from the
CFL point of view, “morally” this condition is always violated because the
information used to build the space derivative is always “lagging behind”
the moving profile, as if it had an infinite speed.

NUMERICAL EXAMPLES ... SOME GRAPHS.
Looking back at ODEs, the news here are that, at least in the present

sloppy context, a given time-advancing procedure can be “stable” or “unsta-
ble” according to which spatial discretization method is coupled to. More-
over, stability requirements may impose a relationship between the time and
space discretization. In the case of the upwind scheme, stability requires
αk < h, i.e. for a given mesh size the time step must be small enough. This
is a strong requirement on the numerics: if in a given computational box of
size L we want more spatial resolution, i.e. more mesh points, we will have
extra numerical work due to the fact that we need to reduce the time step
as well.

If we now write the downwind approximation in implicit form

un+1
j − unj

k
+ α

un+1
j+1 − un+1

j

h
= 0,

the one-step error is most conveniently calculated through the truncation
error τ :

τn+1 =
vn+1
j − vnj

k
+ α

vn+1
j+1 − vn+1

j

k
(5.44)
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from which by Taylor expansion one obtains at the dominant order (we leave
the proof to the reader)

en+1 ∼ −kτn+1 ∼ −1

2
αk(h − αk)v′′

n
j (5.45)

which is just the opposite as (5.45). Strange enough, this seems to suggest
that we have stability for αk > h, i.e. for a large enough timestep. From
the CFL point of view nevertheless this is not so strange: to be stable the
method must get information on the side from which the profile is coming to
build the space derivative, but it may even get information on the othes side
if it looks at a sufficienly later time: in some sense, the method has lost its
possibility of looking at the left at the same time, but catches it by looking
on the right into the future. Nevertheless, this method has weird properties
because you cannot decrease the timestep to increase the accuracy, so it is
never used in practice4. This example is just there to tell that is not enough
to switch from explicit to implicit schemes to gain stability automatically
and safely!

Things go better if you take an implicit Euler with a centered approxi-
mation, i.e.

un+1
j − unj

k
+ α

un+1
j+1 − un+1

j−1

2h
= 0

for which one can verify that the centered form for the space derivatives
gives an error contribution to the space discretization which is second order

in h, so if we limit ourselves to looking at the truncation error at the lowest
possible order we get

en+1 ∼ −kτn+1 ∼ 1

2
α2k2v′′

n
j (5.46)

which following the former reasoning suggests that the scheme is always
stable. It is in fact so, as we will see more rigorously in the following Section.
Here adding stability when looking into the past for a small time step and
stability when looking into the future for a large time step combines to give
overall stability for any parameter values.

NUMERICAL EXAMPLES ... SOME GRAPHS.

5.6.2 Convergence and stability : is zero-stability for PDEs

meaningful?

In the previous Section we saw how information on the truncation errors
can give us some information on the possible stability or instability of the
method. Here we will face the problem more formally. As for ODEs, con-
vergence for initial-value problems described by a PDE is a requirement

4moreover, the linear system you obtain is not diagonally-dominant when p falls into
the stability region, which gives additional troubles in solving it with standard routines.
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concerning the global error, defined at a time step n + 1 as the difference
between the numerical solution and the true one:

En+1
j = un+1

j − vn+1
j (5.47)

where as usual we do not impose un = vn : this is the error accumulated
during the simulation, and not the error on just one step. It may even be
u0j 6= v0j because of the machine rounding error on the initial condition (or

for other strange reasons ... but nobody would be so crazy to force u0j 6= v0j
beyond rounding errors and pretend obtaining a good solution afterwords!).
As for the one-step error, one may take some norm, or consider the error
pointwise.

While consistency relates to one-step and/or truncation errors, the true
requirement, which really matters, turns out to be convergence on a given
finite time T = Nk. As for ODEs, we say that the numerical method is
convergent if:

||EN || → 0 as k, h→ 0, N → ∞, T = Nk fixed (5.48)

i.e. the global error can be made as small as possible when reducing both
time step and mesh sizes, but at a given finite time and letting the number
of steps grow.

The problem is now to see under what conditions we can expect conver-
gence of our scheme. We limit ourselves to the case of a linear PDE of the
form ∂tv = F (v, t) where F is a linear operator containing space derivatives,
and to a linear method of the form :

un+1 = (I +A)un + c(tn, tn + 1) (5.49)

which is just a rephrasing of (5.28) for a different A (I being the identity
matrix and A = A(k, h)) that works for both explicit and implicit schemes.
Proceeding as for ODEs we get :

vn+1 = (I +A)vn + c+ kτn+1

whence

En+1 = un +Aun + c

−
[
vn +Avn + c+ kτn+1

]

= un − vn +A (un − vn)− kτn+1

= (I +A)En − kτn+1

So far it is the same story: at each step the global error is not only
increased by the one-step error e ∼ −kτ , but amplified by the factor (I+A).
It is this amplification that makes some schemes good (stable) and some
other bad (unstable).
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Now for a given value of k we take the upper limit, τ(k, h), on the values
of ‖τn‖ for n = 0, · · · , N (T = k N). We use τ(k, h) = maxn=0,··· ,N {‖τn‖}
for instance, recalling that this upper limit was a function of k, and now
depends on h as well. Then we take some norms and use the classical
inequalities, so to have

||En+1|| = ||I +A||||En||+ kτ(k, h).

Once iterated, we can write

||En|| ≤ ||I +A||(n)||E0||+ kτ(k, h)
n∑

m=1

||I +A||(n−m) (5.50)

where (sorry about that!!!) we introduced some weird notations: whenever a
possible confusion in a formula arises between upper indices indicating time
or exponents of some power, the latter (contrary to common sense) will be
put into parentheses, so upper indices with parentheses will indicate powers
while indices without parentheses will indicate times.

If now ||I + A||(n) is uniformly bounded by some function C(T ) (i.e.
constant if we keep the time fixed as we do when studying convergence),
such that ||I+A||(n) ≤ C(T ) ∀m,k, h, we can establish an upper bound like

||En|| ≤ C(T )||E0||+C(T )T ||τ (k, h)||.

and taking the limits k → 0 (T = Nk finite), h → 0 convergence follows.
This is the Lax equivalence theorem for linear initial-value PDEs: stability
in the form ||I +A||(n) bounded + consistency → convergence.

Otherwise no such upper bounds can be established and, apart from the
term ||I +A||(n)||E0|| which comes purely from the rounding error and can
possibly be discarded, we cannot guarantee that the truncation error part
remains bounded as k, h → 0, N → ∞ even in the case of consistency (i.e.
τ(k, h) → 0 at least as O(k) +O(h)).

Once we come to this conclusion, we realize that the notion of conver-
gence is related to some form of stability exactly as for ODEs: i.e a require-
ment according to which the global error does not get too much amplified

at each time step.

But if for ODEs, one-step and in general zero-stable methods allow such
a function, does such a function C(T ) exist for PDEs ? As a starting step, we
can diagonalize the matrix A and write the scheme (5.49) in the eigenvector
basis for the operator A (we suppose we can do that : it is not guaranteed,
but suppose we can). We recall that for an eigenvector basis {w(l)} we
have Aw(l) = λlw(l) where λl are eigenvalues and subscripts in parenthesis
indicate an index running on the basis. Then when developing on this basis
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we write

un =
∑

l

Un
(l)w(l)

Aun = A
∑

l

Un
(l)w(l) =

∑

i

Un
(l)λ(l)w(l)

c =
∑

l

C(l)w(l)

so the scheme (5.49)

un+1 = (I +A)un + c

rewrites ∀ l as
Un+1
(l) = (1 + λ(l))U

n+1
(l) +C(l)

This is formally equal to (5.49) but we have a set of scalars instead of a vector
and a linear operator. Nevertheless we can proceed as before, introduce a
pointwise global error on the components En+1

(l) = Un+1
(l) −V n+1

(l) and get ∀ l :

|EN
(l)| ≤ |1 + λ(l)|(N)|E0

(l)|+ kτ(k, h)
N∑

m=1

|1 + λ(l)|(N−m) (5.51)

(where E and τ are not the same as before, of course).

Let’s take now a specific example for which we can calculate eigenvalues
explicitly: the explicit Euler centered method for the advection equation
with periodic b.c., which is exactly in the form (5.49) with c = 0 and a
M ×M matrix A (related to (5.34))

















0 −p/2 0 . . . 0 0 0 . . . 0 p/2
p/2 0 −p/2 . . . 0 0 0 . . . 0 0

. . .
0 0 0 . . . 0 −p/2 0 . . . 0 0
0 0 0 . . . p/2 0 −p/2 . . . 0 0
0 0 0 . . . 0 p/2 0 . . . 0 0

. . .
0 0 0 . . . 0 0 0 . . . 0 −p/2

−p/2 0 0 . . . 0 0 0 . . . p/2 0

















where p = αk/h. One can show that the eigenvalues of A are :

λ(l) = i
αk

h
sin

(
2π

L
lh

)

≡ i
k

h
βl , l = 1 . . .M , −α ≤ βl ≡ α sin(2πlh) ≤ α

(5.52)
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We can now evaluate the amplification factor:

|1 + λ(l)|n =

∣
∣
∣
∣
1 + iβl

k

h

∣
∣
∣
∣

n

=

(∣
∣
∣
∣
|1 + iβl

k

h

∣
∣
∣
∣

1/k
)nk

=





(∣
∣
∣
∣
|1 + iβl

k

h

∣
∣
∣
∣

h/k
)1/h





tn

.

If k → 0 , h → 0 in such a way that k/h→ const (and tn = nk is fixed) this
quantity → ∞: this because of the 1/h at the exponent! So the fact that
for PDEs, contrarily to ODEs, we have amplification factors that contain
explicit the mesh size h and can go to∞ as h→ 0 do not ensures convergence
for a simple explicit Euler method, which is consistent. By extension, for
PDEs we cannot be sure that a consistent zero-stable method is convergent!

5.6.3 Absolute stability

For ODEs we obtained that the global error at a time T = Nk is bounded
by a function C(T ) (C(T ) = eKT for one-step methods) times a term O(k)
in such a way that it can go to 0 as k → 0 (weak requirement, zero-stability).
Zero-stability was a nice concept because associated to consistency it implied
convergence. Nevertheless it was not all because in practice we needed the
stronger requirement of absolute stability, i.e. that for a finite chosen k the
error stays uniformly bounded at any time T (even T → ∞) by a constant
C (dependent on k).

We just saw that for PDEs we cannot guarantee that such a C(T ) exists,
but still we can enforce absolute stability. Remember that absolute stability
for ODEs has usually a meaning for exact solutions that are themselves
bounded, because it is hard to pretend a forever-bounded error for a solution
which has no bound and grows forever, like an exponential5. It turns out
that for most of the PDEs used in practice, for some initial conditions the
true solution is bounded, and it is enough to imagine that we are applying
the scheme to these solutions : in most cases it will work fine even for
unbounded solutions. An example is a stable scheme for calculating a linear
instability... TO BE DEVELOPED LATER

With reference to expression(5.50), it is enough to require ||I + A|| ≡

5in this case we could ask for an error that grows slower than the solution, but it is
still an active research subject and it goes a little bit too far.
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a(h, k) < 1, since in this case :

||En|| ≤ a(n)||E0||+ kτ(k, h)
n∑

m=1

a(n−m)

= a(n)||E0||+ kτ(k, h)
1 − a(n)

1− a

→ kτ(k, h)
1

1 − a
as n→ ∞

and the error is the bounded by C(k) = kτ(k, h) 1
1−a(h,k) which can be made

small enough by choosing a convenient region in the plane (h, k). This will
be the region of absolute stability for the method.

Equivalently, in an eigenvector basis it is enough to require |1+λ(l)| < 1.
In other words, an absolutely stable scheme will contract the solution, which
will eventually be dissipated to 0, but this is the price to pay for avoiding
catastrophic explosions.

It is interesting to examine the marginal case ||I+A|| ≡ a = 1, for which
∑n

m=1 a
(n−m) = n and then :

||En|| ≤ ||E0||+ knτ(k, h) = ||E0||+ Tτ(k, h)

and the error will grow at most linearly with time (this is formally the
case in which at each step the one-step error at most adds at each step).
Formally the region of stability includes the marginal case, i.e. the method
is absolutely stable if ||I +A|| ≤ 1.

This is really nice, but nevertheless evaluating the eigenvalues of the
matrix involved in the numerical method can be a complete nightmare.
Luckily, there is a procedure known as Von Neumann stability analysis that
for homogeneous PDEs gives an answer if we pretend to be in a periodic
case.

5.6.4 The Von Neumann criterion for stability



Chapter 6

Implementation

In this chapter we have several objectives. We will present very briefly the
GNU build system, or autotools which are the standard software engineering
tools in linux. We will not enter into much details we just want to avoid
to write Makefiles, to care about portability and source file dependencies to
name a few common tasks, that’s all.

We also want to provide the reader with the basics of C++. This is not a
C++ course and it would not be very reasonnable to pretend otherwise. We
will indeed just concentrate on the C within C++ and particularly just on a
tiny subset of it. We will not dive into C++ oddities not because we think
this is useless1 but because it takes years to master features of C++ such as
inheritance, polymorphism and template. Why C++ then, and not directly
the C language ? Because we do not want you to mess around with pointers
! Even if you are a C expert you must admit that a significant part of C
programming is dedicated to debug memory problems. The C++ lacks vectors
and matrices classes specifically dedicated to numerical computations but
we can use a popular library that can catch fortran performance in some
cases : blitz++. So, a tiny subset of C++ equipped with an array library
such as blitz++ is all we need to implement the numerical projects during
this course.

Why using a compiled language ? We must admit that it is a common
habit in computational astrophysics to code in compiled languages such as
fortran or C++, very close to metal indeed. It is just not our habit to use
some very famous interpreted languages 2 but using them is quite ok if you
feel like it (again, it is simply not our habit).

So let me argue a bit in favour of compiled languages by telling a short
anecdote. A colleague tried to convince me that using one of these famous
interpreted softwares is the only way to computation by making the following
analogy : prefering to use compiled languages instead of these softwares is

1Indeed, we just think the opposite !
2whose names we cannot pronounce because there are not free as in free speech . . .
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like entering a car and saying “This bike is useless, there are no pedals and
handlebar”. Indeed, if I were not that slow for retorting I could have said
(it occurred to me 2 minutes late actually) that prefering these softwares to
compiled languages is like entering a formula 1 and say “This car is crap,
there is no radio” . . .

By the way, the whole idea is to code everything from scratch. Of course,
in the professional world you might want to use very efficient libraries to solve
i.e. linear systems of equations, Fast Fourier Transform, etc . . . Ok, you can
use these libraries as black boxes and if they do exist we strongly suggest
that you do so but nonetheless our aim is again to code everything from
scratch as far as we can get. We want to give you an hint on how these
black boxes are made and not how to use them.

6.1 Autotools inferno

As a programmer there is a common evolution for taking care of the building
and portabilities issues of your projects. First, you just do not want to care
about thoses things because they are a loss of time and you think, “well,
just a short bash script will do”, with only the compiler command line
and its options into it. After messing around for a while and losing a lot
of time, you convince yourself that trying to develop a decent Makefile

that will handle for instance the dependencies between your source files is a
better idea. Eventually, you will be faced with the problem to export your
code to another computer and you will play somehow with portability issues
which are kind of tricky. You try to write some bash script to automatised
the whole job but you realise that indeed this job is a hard one and that
unfortunately a bash script is far from being portable. When you have
reached this third phase of your developer life it is time to use a descent 3

build system such as the GNU build system, aka the autotools. What we
do propose here is to save you a lot of time by skipping the two first phases
and dive into the autotools world right away.

If you are linux oriented you have probably already installed the so-
called autoconfiscated packages as a simple user. They come in the form
of a tarball, say foobar-0.1.tar.gz, and you install them in the following
manner

> ta r xv fz foobar −0.1 . ta r . gz
> cd foobar −0.1
> c on f i g u r e
> make
> sudo make i n s t a l l

3Well, yeah, as a matter of fact the use of this particular adjective could be debated
. . .



6.1. Autotools inferno 71

where > is the shell prompt. We will assume that “.” is in your path,
otherwise you need to put ./ in front of every command or simply add
export PATH=.:$PATH. in your .bashrc file.

From the user point of view one must admit that it is quite simple. You
do not have to bother with the path to the necessary libraries for instance,
the configure script does it for you. Well, at least if the developer did a
good job.

Well, from the point of view of the developer the autotools are not
that nice to use but still doing basic and standard stuffs is not that difficult.
If you want to write autoconf macros for a new feature or library that
you want to check for, well, it is a completely different story and everything
becomes nightmarish. Fortunately, we will happily avoid this ! So please, do
not be scared. We will use the strict minimum of the autotools capabilities.
Remember that the main idea is to avoid to write Makefiles by hand and
forget about file dependencies. As a supplementary benefice, your program
is ready to be installed on different UNIX systems even those you probably
never heard off.

Say that your project is called foobar. You must create a directory with
that name with the following command

> mkdir foobar

When you are done with that, you need to create and edit some files.
The first one can be considered to be the autoconf control file and is called
configure.ac (where .ac stands for autoconf). Here comes a minimalist
version of this file that you will certainly complete with other usefull macros
in the next future for projects of your own.

1 AC INIT ( [ foobar ] , [ 0 . 1 ] , [ yourmail@unice . f r ] )
2
3 AM INIT AUTOMAKE([−Wall −Werror f o r e i g n d i s t−bzip2 ] )
4
5 AC PROG CC
6 AC PROGCXX
7
8 AC CONFIG HEADERS( [ c on f i g . h ] )
9
10 AC CONFIG FILES ( [
11 Make f i l e
12 s r c /Make f i l e
13 ] )
14 ACOUTPUT

In line 1, You need to specify the packages name, the version number
and the e-mail address for bug reports. Line 3 initialise the companion to
autoconf, called automake whose job will be to create Makefile for you.
Then, with the lines 5 and 6 we check for an available C and C++ compilers.
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autoconf does a very complicated job but in particular it will generate some
usefull output files. For instance, it will generate a header files containing
#define macros such as #define PACKAGE "hello" for instance that you
might want to uses in your code. It comes in handy when you need some
library that might not be installed and you have to deal with #ifdef direc-
tives. This is the purpose of line 8. Finally, the macro at line 10 instructs
the build system to generate the Makefiles. The AC_OUTPUT macro actually
tells autoconf to create the output files.

We need to give instructions to automake as well. For this purpose a file
name Makefile.am (where .am stands for automake) must be created. In
our minimalist approach it specifies only that we will have a subdirectory
src

SUBDIRS = s r c

that is all.

We must create the subdirectory src that will contain our source code
with

> mdkir s r c
> cd s r c

the last line places us within this subdirectory where we have to add another
Makefile.am containing

bin PROGRAMS = foobar
foobar SOURCES = foobar . cpp

The first line instructs automake that we have one executable (expressed
by the prefix bin_) file named foobar. The second specifies the sources for
this program. Ok, here it is very simple since we have just one source file.
However the “beauty” of the thing is that with a lot of sources files (including
.h and .cpp files, etc . . . ) you do not have to worry about dependencies
the build system deals with all that by itself.

We are left with the creation of our first program in C++, the classical
“Hello world” example. Fire-up your favourite text editor to create and edit
the foobar.cpp file with for instance

#inc lude <iostream>
us ing namespace s td ;

i n t main ( ) {

cout << ”He l lo world ! ” << endl ;

r e turn 0 ;
}
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that should be located in the src directory. Do not worry, we will get back
to what this code actually does in the next section about C++.

We are not through yet because we need to invoke autoconf, automake
and related programs (aclocal and autoheader). Personally, I cannot re-
member the exact sequence and what does what. The good news is that I
am not alone and this is the reason why the magical command autoreconf

does everything right for us. The first time it has to be invoked with the
following option to generate all the necessary files

> auto r e con f −− i n s t a l l

which prints out

c on f i g u r e . ac : 8 : i n s t a l l i n g ‘ . / i n s t a l l −sh ’
c on f i g u r e . ac : 8 : i n s t a l l i n g ‘ . / miss ing ’
s r c /Make f i l e .am: i n s t a l l i n g ‘ . / depcomp ’

If you look at what is now in the directory you will notice the creation
of the configure script and the Makefiles. If you are curious enough to
look within this files you will notice that they are kind of cryptic even if you
are familiar with shell programming and the make program. Remember it
is generated in the idea of being portable on any kind of Unix system and
the shell script configure only use features common to every shell and not
just you favourite one. It also follows the GNU project coding standards.

We are almost done. We just need to invoke the configuration script and
then make like that

> c on f i g u r e
> make

That’s it. You can run the foobar “Hello World” program just as usual

> s r c / foobar

to get the expected results

Hel lo world !

Now, if you want to install this very useful greeting program on your
computer you can do it with

> sudo make i n s t a l l

Yeah, you need to be root because by default, following the Unix and GNU

standards, the program will be installed in /usr/local/bin. Ok, you will
not be root on the university computers for instance, in that case you can
always specify where you prefer to install everything whith the configuration
script called in the following manner

> c on f i g u r e −−p r e f i x=/path/ to /your/ f a v o u r i t e / f o l d e r
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and then simply

> make i n s t a l l

without the sudo.

If now you think that it is the best program ever written and that you
want to distribute it to the masses here goes what you need to do

> make d i s t check

You obtain too wonderful standard Unix package foobar-0.1.tar.gz and
foobar-0.1.tar.bz2. It contains everything needed to build your program
on any kind of Unix system4. By having a look at the beginning of this
section you know how to handle this autoconfiscated package.

6.2 A touch of C++

Again, our purpose is not to give a lecture about C++. We will not cover
the most advanced features here but concentrate on what we need only. We
will try to learn trough a set of selected examples rather than exposing the
language features one after the other. If you do not have any background in
computer programming, you can expect this section to be kind of difficult
to swallow . . .

If you really want to learn C++ you can read Eckel et al. (2000, 2003)
but you must know the C language first. This is not for the lighthearted:
we are not talking about hundredth of pages but thousands of pages though
very well written pages I think. These books do not only teach you the
language but how to program in C++, which is quite a different business:
you can know the syntax perfectly and write some very bad code. Then, if
you want to go even further, Gregoire et al. (2011) is a good reference to go
for. Remember that it’s a long way to the top if you wanna rock’n’roll 5.

6.2.1 Hello world

In the previous section we already introduced the classical “Hello world !”
program. Let’s look at it in details now. The first line with “#include <iostream>”
is not C++ actually but a C pre-processor macro (cpp below). It includes the
content of a file. In C++ things must be declared before they are used.
These declarations are put together in header files usually ending in .h.
For instance to include the content of the header file foo.h you will use
#include "foo.h". If the header file to be included is a standard one,

4Well, for such a simple program it is true. For complicated project some more work
might be necessary though.

5Ridin’ down the highway, Goin’ to a show, Stop in all the by-ways, Playin’ rock ’n’
roll . . . :-)
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i.e. from the standard library, you would use <> instead of "". If you are a
C programmer there are some slight changes. In C to include the math.h file
you would have use #include <math.h> but in C++ you must use a slightly
different syntax with #include <cmath>. You skip the .h and you add a c,
no big deal.

So, #include <iostream> includes all the necessary declaration for the
input/output stream. Streams are used in C++ for input/ouput operations
like printing the message “Hello world !” on the standard output.

Then using namespace std; does exactly what it says : we use the
namespace called “std”. A namespace contains names and has its impor-
tance with large project because you might run out of names after a while.
For instance, you might want to declare a flag variable in many places and
you must have to face conflicts of declarations. You can have your different
variables flag in different namespaces to solve this problem. The point is
that the declarations of the Standard Template Library (STL), part of the
C++ standard, are embedded in the “std” namespace.

As in C, your program must have a function called main that returns an
int value. The main function can have some parameters. In linux you can
read the command line argument but we just skip that for the moment. A
function in C++ is a programing entity that will do some program, to which
we pass some parameters and that can return a “value”. Here the value is
an int that stands for (signed) integers. Within a function you must put
some declaration sand statements to be executed. They are grouped in a
scope limiting the core of the function definition. A scope starts by a {

and end with }. main() states that the main function takes no argument.
You can write { just after main() or in a new line or whatever because the
source code can be formated as you like. Some like to start their { right
after main(). Others prefers to go to the next line. You won’t believe it but
there is a lot of debate about this behaviour. Do whatever you like, but be
consistent. The readability of your code is a very important matter.

Then comes the statement

cout << ”He l lo world ! ” << endl ;

“cout” is the stream corresponding to the standard outpout. To sent
something to this stream you must use the following operator <<. It will
have the effect of printing things out on your terminal. endl, a manipulator
of the stream, has the effect of inserting a new line character.

Since we are finished with our program we must end the main function by
returning 0 that means everything went fine. We do this with the following
statement : return 0;.
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6.2.2 Computing the square root

We are going to write a small program that ask for a number and gives its
square root. Ok, it is not a very interesting program but it illustrates and
introduces some features that we need.

First of all, we need the math library to compute the square root that
defines the sqrt function. We need to instruct the autotools to link with
this library by adding this macro to the configure.ac file just after the call
to AC PROG CXX

AC CHECK LIB( [m] , [ s q r t ] , [ ] ,
ACMSG ERROR( [ The math l i b r a r y must be i n s t a l l e d ] ) )

This autoconf macro checks the presence of a function (argument 2) in a
given library (argument 1). I am afraid that the brackets must be present. In
some situations it does not matter in other it does since one never remember
why it is so, just put the bracket and everything is going to be just fine.
Argument 3 instructs autoconf what to do if we find the library. In our
case, we want the default behaviour and we let the autotools set the linker
and cpp flags for us. Then, the last argument is the behaviour in case we
do not find the library. We use a macro dedicated to print out an error
message. We do not give options to the user in that case: the presence of
the math library is mandatory. In some situations, it is not the best thing
to do and more complicated things have to be done. For the time being it
is quite sufficient.

Now it is time to create and edit a new file that will contain the source
code for our programm asksqrt.cpp and that is located in the src subdi-
rectory. We must tell to automake that we have a new bin file by modifying
the src/Makefile.am like that

bin PROGRAMS=he l l o a sk sq r t
hello SOURCES=he l l o . cpp
asksqrt SOURCES=asksq r t . cpp

remembering that we already have our “Hello World !” program. Now, let’s
create asksqrt.cpp with

#inc lude <iostream>
#inc lude <cmath>

us ing namespace s td ;

i n t main ( ) {

double x ;
cout << ”Enter a number : ” ;
c in >> x ;
cout << ”The square root o f ” << x
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<< ” i s ” << s q r t ( x ) << endl ;
r e turn 0 ;

}

We declare a variable name x as a double which is a built-in C++ type that
stands for double precision floating point numbers. Note that in C++ you
can define your own types too. “built-in” type means that it comes with
the language itself. By the way, the declaration can be put everywhere you
like in the code, not necessarily at the beginning as in C or fortran with
the restriction that something must be declared before it used. Of course,
you have other built-in type such as float for single precision arithmetic 6,
int for integer for instance.

cin is the input stream. You will have to enter the number whose square
root you want to compute in the terminal. Then, the stream operator >>

will put data from the stream into you double variable. You do not have to
specify the type of the variable.

The other line in the code just prints out a message and the results of
the computation. If you want to test the program, you need to call make in
the main directory of our project foobar where configure.ac is located.
You should get first the following line

Enter a number :

to which you can reply 27

Enter a number : 27 .

and press return to obtain

The square root o f 27 i s 5 .19615

Now, what if the user of this amazing program enter a negative number
? With -1. we obtain

The square root o f −1 i s −nan

a nan (not a number) exception from the IEEE standard of course !

We can actually test for the positivity of x with an if statement by
modifying our small program like that

double x ;
cout << ”Enter a number : ” ;
c in >> x ;
i f (x>=0.)

cout << ”The square root o f ” << x
<< ” i s ” << s q r t ( x ) << endl ;

6Again, the C++ standard just requires that the size of a double is larger or equal to
that of float.
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e l s e
cout << ”Error : nega t iv e number . ” << endl ;

The expression x>=0. is a boolean and is true or false according to the
value of x. >= is a comparison operator but there are other like: >, <=, < self
explained. If you want to test for equality the operator is ==; for inequality
it is != meaning different from.

Be extremely careful here: == not just one = which is the assignment
operator ! You can use = in an if statement like that

i f ( x=0.) doSomething ( ) ; // Legal but dangerous !

it is legal but very dangerous and have a complete different meaning that
one might expect. x is set to 0. And the statement x=0. has a value, the
value of x actually, so this if statement eats a 0 which means false and
the function doSomething will never be called. Usually, compilers warn you
for this kind of obscure programming habits.

6.2.3 Playing with arrays

Since we are going to do some numerical computations we will play with
vectors and matrices for sure. We then need arrays of floating point number
to do our calculations. We do not necessarily know the size of a vector
or a matrix before starting the computation because it might depend on
other parameters given by the user of the program (e.g. the precision of the
computation). Consequently, we need allocatable arrays. Of course, like in
C you can allocate memory at your ease with dedicated operators (new and
delete). If you want to spend, say, 90% of your coding time by debugging
pointer problems all well and good: we will not follow your path.

The bad news is that there is simply no allocatable array class in the
C++ standard library. Well there is a vector class actually, but no multi-
dimensional arrays in C++. You can do such thing as vector of vectors (etc
. . . ) and so you could create your array classes in that way. For numerical
computation it might not be very efficient though because your “matrix”
might well not be stored in a contiguous block of memory.

We could develop an array class, in particular by overloading the defini-
tion of operator like +, * etc to obtain something quite descent (one of the
author does just that) at low cost. We can instead use libraries to do the
job knowing that we will not use all the capabilities of the library. There
are two good possibilities :

• the boost library (www.boost.org/) and its array class. However, its
use can be kind of cryptic, in particular initialization of array data.

• The blitz++ library. It is a very powerful template library with a lot of
features you can find in interpreted languages with implicit looping and
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even the notion of stencils (useful for finite differencing techniques).
It is included in linux distribution such as debian or ubuntu. So our
choice is made. However, there is something quite strange. When we
started to write these section (June 2012) the main library web page
www.oonumerics.org/blitz/ expired ! We can still found everything,
including the source code, at blitz.sourceforge.net and http://

sourceforge.net/projects/blitz/. The manual is well written so
if you think you might need more advanced features you can have a
look into it.

What we need to do is to tell the autotools to check for the blitz++

library. We can do it by adding the following line to our configure.ac file

AC CHECK LIB( [ b l i t z ] , [ c x a a t e x i t ] , [ ] ,
ACMSG ERROR( [ The b l i t z++ l i b r a r y must be i n s t a l l e d ] ) )

This gives the false impression that it is always that easy with autoconf.
Unfortunately, this is simply not true. With C libraries indeed it can be
that easy. With C++ it is a different story. The AC_CHECK_LIB macro test
by compiling a little program that we can link and use the library correctly.
For this, it needs to be provided by a function. However, for a pure C++

library there is no function definitions. There are only classes. To take this
into account some modyfication to the AC_CHECK_LIBmacro is sufficient but
clearly out of the scope of these lectures. With blitz++, a pure C++ class,
we do not have any standalone functions (but methods in classes of course
!). However, we are still lucky because we still have symbols to provide to
the macro

__cxa_atexit is such a symbol as you can find by inspecting the library
content (with the ar -t and nm unix commands). Another possibility would
be to use the symbol _blitz_id as mentioned on http://sourceforge.net

blitz++ web page. However, for recent version of the library this symbol
no longer exists.

Is there a better way to proceed ? The answer is yes. Someone de-
velops a macro for checking for the library. You can find it by search-
ing for ac_cxx_lib_blitz.m4 on the web but then we need to modify our
configure.ac and Makefile.am files accordingly and the macro itself needs
to be patched somehow. So, we check for the library with the method pro-
posed above. It is not the best way to proceed but still it is easy and it works.
Another possibility would be to hack the autoconf macro AC_CHECK_LIB

and adapt it to suit our needs. This goes out of the scope of these course.
Let’s create a new file arrays.cpp to play with the array classes. First

we need to include the header file like this

#inc lude <b l i t z / ar ray . h>

and use the blitz name space like that
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us ing namespace b l i t z ;

Now in the core of our program we can defined a vector of double as easy
as this

Array<double ,1> v (4 ) ;

which is of size 4.
To initialize this vector you can assigned its values with simply

v = 1 . , 2 . , 3 . , 4 . ;

Note that this way of initializing the vector is not something which is defined
by C++ ! The author of the library obtained this syntactic behaviour by
overloading the “,” operator ! Yes, you can do this in C++ . . .

You can send the arrays to some data streams to print them out for
instance like that

cout << v << endl ;

like for a double.
Of course, you can create arrays of any type for which arithmetic op-

erations make sense such as Array<float,1> v; or Array<int,1> v;. Note that
you do not need to specify the size of the array when declared.

For a matrice, you just need to declare an array of rank 2 with the
following obvious syntax

Arrays<double ,2> m(2 ,2 ) ;

which declare a 2× 2 matrix. Again you can initialize it with

m=1. , 2 . ,
3 . , 4 . ;

and you can do things like that

Array<double ,2> m2;
m2=sq r t (m) ;
Array<double ,2> m3;
m3=m+m2;

etc . . .

6.2.4 Writing results into a file

6.2.5 And now, what ?

These notes about C++ might not be sufficient to develop an advanced pro-
gram. Again, the purpose is not to learn C++ but how to integrate differential
equations numerically. We learn a few basic things and how to develop a
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small program and compile it. This was all we needed to start coding by
ourselves. In Chapter 7 we will face some real numerical problems. When
we will be in need of some C++ news features or concepts, we will explain it
in situ.
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Chapter 7

Projects

Now, it is time for a little action. Well, you know “action”, like spend-
ing hours in front of the computer, even talking to it, perhaps insulting it
and, of course, drinking too much coffee . . .We will focus our considerations
on three types of PDEs: diffusion, advection and wave equation. From a
mathematical point of view (see chapter 5) they are of a different nature
corresponding to parabolic (the first one) and hyperbolic (the others) PDEs
(the third foundamental kind, elliptic equations, is so far missing from these
lectures). Numerically we will see that the treatment is somehow different.
However, from a physical point of view we might say that all arises because
of the existence of some conserved quantity. Let’s consider a scalar quantity
v in one dimension. The conservation of this quantity takes the following
form

∂t v + ∂x F = 0 , (7.1)

where F is the flux of the quantity. F might depend on v or its gradient
∂xv, etc . . .

Now, if the flux is simply proportional to v, for instance F = c v, c being
a constant, we obtain the advection equation

∂t v + c ∂x v = 0 . (7.2)

If the flux is proportional to the gradient, F = −D∂x v we obtain the
diffusion equation:

∂t v −D∂2x v = 0 . (7.3)

The conserved quantity could also be a vector v =
(
v1, v2

)
which leads

to the following conservation equation

∂t v + ∂v F = 0 . (7.4)

As for the advection equation we choose the flux vector to be proportional
to v: F = Av where A now is a matrix rather than a scalar. Taking the

83
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matrix A to be

A =

(
0 c
−c 0

)

, (7.5)

where c is a constant, we obtain the following system of equations for the
component of v

{
∂t v

1 + c ∂x v
2 = 0

∂t v
2 − c ∂x v

1 = 0
. (7.6)

By combining both equation, e.g. deriving the first with respect to t, using
the fact that ∂t and ∂x commute and, inserting the expression of ∂t v

2, we
obtain the wave equation

∂2t v
1 = c2 ∂2x v

1 , (7.7)

for the first component of v1. A similar equation holds for the second com-
ponent v2. Note that in this form, we recognize c as the propagation speed
of the wave.

7.1 The diffusion equation

7.1.1 1D diffusion equation

We want to determine a numerical approximation to the solution v(x, t) of
the 1D diffusion equation given by

∂t v(x, t)−D∂2x v(x, t) = 0 , (7.8)

where D, the diffusion coefficient, is assumed to be constant on the whole
integration domain x ∈ [a, b].

The above equation must be supplemented by boundary conditions in
x = a and x = b since the derivation respect to x is of order 2. We will
use Dirichlet boundary conditions by specifying the values of the function
at the boundaries

v(a, t) = γa(t) and (7.9)

v(b, t) = γb(t) ,

where γa and γb are two given functions of time.

To fully specify the problem there remains to provide the initial condition
with

v(x, t0) =
◦
v(x) , (7.10)

where t0 is the initial instant and
◦
v(x) is a given function of space defined

on [a, b]. For evident reasons of compatibility, it must be
◦
v(a) = γa(0) and

◦
v(b) = γb(0), while when plugging both initial and boundary conditions into
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the equation itself, and evaluating it at x = a or x = b, and t = 0 one derives
further compatibility conditions:

γ̇a(0) = D
◦
v
′′

(a) and (7.11)

γ̇b(0) = D
◦
v
′′

(b) ,

primes and dots indicating respectively derivatives with respect to space and
time.

1- We will first study the numerical scheme called “Forward Time Centered
Space” (FTCS) defined by

un+1
i − uni

k
= D

uni+1 − 2uni + uni−1

h2
, (7.12)

where uni represent the numerical approximation to v(xi, tn), h and k are
respectively the spatial and temporal steps with xi = i h+a and tn = t0+n k
with h = b−a

N−1 , for j = 0, · · · , N − 1 and n ≥ 0.

1-a) What is the order of the FTCS method ? Compute the dominant
term in the local truncation error τ .

1-b) Substituting a Fourier mode ξnl ej kl x in Eq. (7.12), where j =
√
−1,

prove that the amplification factor

∣
∣
∣
∣
∣

ξn+1
l

ξnl

∣
∣
∣
∣
∣
is given by

∣
∣
∣
∣
∣

ξn+1
l

ξnl

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
1− 4α sin2

(
hkl
2

)∣
∣
∣
∣
, (7.13)

where the Courant number is defined by α = kD
h2 .

1-c) By requiring the condition

∣
∣
∣
∣
∣

ξn+1
l

ξnl

∣
∣
∣
∣
∣
< 1, deduce that this scheme is

stable in the Von Neumann sense under the following condition

k <
1

2

h2

D
. (7.14)

1-d) What is the main drawback imposed by the condition (7.14) ?
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2- Write a program to solve the diffusion equation with

◦
v(x) = e

− 1
4

x2

D t0 ,

γa(t) =

√

t0
t
e−

1
4

a2

D t ,

γb(t) =

√

t0
t
e−

1
4

b2

D t ,

where you can use a = −b to simplify somehow.

2-a) Compare the following exact solution

v(x, t) =

√

t0
t
e−

1
4

x2

D t ,

to the numerical results with the FTCS scheme. You might have recognized
the Green function of the diffusion equation.

2-b) Choose a time step k in order to generate instabilities in the FTCS
scheme.

3- We study now an implicite scheme “Backward Time Centered Space”
(BTCS) given by

un+1
i − uni

k
= D

un+1
i+1 − 2un+1

i + un+1
i−1

h2
, (7.15)

3-a) Show that this scheme is unconditionally stable.

3-b) The scheme being implicit, un+1
i is obtained by solving a linear system

that you will write explicitely.

3-c) Write a program that solve this linear system using for e.g. the Gauss-

Seidel method and integrate again the diffusion equation with the BTCS
scheme with the same boundary conditions.

3-d) Verify the unconditional stability of the BTCS scheme. What are the
pros and cons of implicit method with respect to explicit ones ?

4- We now consider the Crank-Nicolson scheme

un+1
i − uni

k
=

1

2
D

(

uni+1 − 2uni + uni−1

h2
+
un+1
i+1 − 2un+1

i + un+1
i−1

h2

)

. (7.16)

4-a) What is the order of this method ?
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4-b) Study the stability of the Crank-Nicolson method.

4-c) Adapt your previous program to solve the diffusion equation with this
numerical scheme.

7.1.2 2D diffusion equation

If we want to go to 2D, or even 3D, there is indeed not much difficulties
since what we have done in 1D can be generalized to 2D without much
work. Their is an additional dependence of v(x, y, t) on y so our numerical
approximation must now be indexed by a new index j to become uNi,j, where
i = 0, · · · , Nx − 1 and j = 0, · · · , Ny − 1 where we introduced the total
numbre of x and y values respectively Nx and Ny.

For instance, we can generalize the FTCS explicit scheme like this

un+1
i,j − uni,j

k
= D

(
uni+1,j − 2uni,j + uni−1,j

h2x
+
uni,j+1 − 2uni,j + uni,j−1

h2y

)

,

(7.17)
were hx and hy are the spatial steps in x and y respectively. The domain of
R
2 we are interested in is the Cartesian product [xmin, xmax] × [ymin, ymax]

defining hx and hy as

hx =
xmax − xmin

Nx − 1
(7.18)

hy =
ymax − ymin

Ny − 1
(7.19)

so that we also have

xi = i hx + xmin (7.20)

yj = j hy + ymin . (7.21)

5- Give the expressions for the BTCS and the Crank-Nicolson schemes in
2D.

6- For the Von Neumann stability analysis we now have to insert Fourier

modes given by ξnl,m ej (kl x+km y). Give the conditions for the stability of the
three numerical schemes by showing that

• the BTCS and Crank-Nicolson are, as in 1D, unconditionally stable,

• the FTCS scheme is stable under the following condition

k <
1

2

h2

D
, (7.22)
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where h is defined by

h =
hx hy

√

h2x + h2y

. (7.23)

7- Write a computer program that solve the 2D diffusion equation with

Dirichlet boundary conditions and and initial profile
◦
v(x, y) of your choice 1.

7.2 The wave equation

7.2.1 1D equation

We seek a numerical approximation to the solution v(x, t) of the 1D wave
equation

∂2t v(x, t)− c2 ∂2xv(x, t) = 0 , (7.24)

where c, the propagation speed, is assumed to be constant over the integra-
tion domain x ∈ [a, b].

This equation could be used to describe for instance the vibration of a
string. In this case, v(x, t) would represent the displacement of the string
at x for a given time t respect to the equilibrium situation.

We assume Dirichlet boundary conditions in a and b

v(a, t) = γa(t)

v(b, t) = γb(t) , (7.25)

where γa and γb are two given functions of time. Since the problem is order 2
in time we also need two initial conditions like these

v(x, t0) =
◦
v(x)

∂tv(x, t0) = w(x) (7.26)

where
◦
v(x), w(x) are two known functions of the spatial coordinates x and

t0 the initial instant. Without loss of generality we will assume t0 = 0 below.
As usual, we define the spatial mesh with xi = h i + a for h = b−a

Nx−1
and i = 0, · · · , Nx− 1. The numerical approximation is sought over discrete
values of time tn = t0+n k where k > 0 is the integration time step. For the
numerical approximation to the solution of Eq. (7.24) the following notation
will be used : uni ≈ v(xi, tn).

1- We propose to integrate numerically Eq. (7.24) using central finite dif-
ferences for the second order time derivative

∂2t v(xi, tn) ≈
un+1
i − 2uni + un−1

i

k2
, (7.27)

1You can put some oscillating boundary conditions with cos and sin of different pulsa-
tions to get a psychedelic effect . . .
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as well as the second order spatial derivative

∂2xu(xi, tn) ≈
uni+1 − 2uni + uni−1

h2
. (7.28)

1-a) Give an expression for the dominant terms in the one-step errors in
t and x for the following numerical scheme obtained by using Eq. (7.27)
and (7.28)

un+1
i − 2uni + un−1

i

k2
= c2

uni+1 − 2uni + uni−1

h2
, (7.29)

where the Taylor expansions will be done around (xi, tn).

1-b) Is this numerical scheme consistent ?

2- By inserting Fourier modes ξnl ej kl x in Eq. (7.29), show that we obtain
the following linear recurrence relation

ξn+1
l − (2− γ2) ξnl + ξn−1

l = 0 , (7.30)

where γ =
2 c k

h
sin

(
kl h

2

)

.

3- In order to obtain the solution to the linear recurrence relation Eq. (7.30)
we seek solution of the form λn i.e. λ to the power of n (and not λ at time
step n).

3-a) Prove that λ verifies the following characteristic equation

λ2 −
(
2− γ2

)
λ+ 1 = 0 . (7.31)

3-b) Show that when the discriminant ∆ of Eq. (7.31) defined by ∆ =
γ2
(
γ2 − 4

)
is positive we have two roots λ± given by

λ± =
2− γ2 ± γ

√

γ2 − 4

2
, (7.32)

with |λ−| > 2.

3-c) When ∆ < 0, prove that both complex roots given by

λ± =
2− γ2 ± i γ

√

4− γ2

2
, (7.33)

verify |λ±| = 1.
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4- According to the stability theory of numerical integration methods of
ODEs,

4-a) Deduce from the above consideration that the condition for the stabil-
ity of the numerical scheme Eq. (7.29) is obtained if the Courant-Friedrich-

Levy criterion is fulfilled
c k

h
< 1 . (7.34)

4-b) Since c is the wave propagation speed could we expect intuitively such
a result ?

5- The explicit scheme Eq. (7.29) is a two (time) step method. We do

have the value of u0i as initial condition given by u0i =
◦
v(xi). However, u1i

is missing and must be derived from the condition ∂tv(x, t0) = w(x). We
can use the following little trick: we condiser our numerical approximation
a step backward in time from t0 : u−1

i ,

5-a) Prove that the u−1
i ’s must verify

u1i − u−1
i

2 k
= wi , (7.35)

in order to preserve the spatial order of the numerical scheme, with wi =
w(xi).

5-b) Then, show that we can use the following relation to start our numer-
ical scheme out

u1i =
(
1− α2

)
u0i +

α2

2

(
u0i+1 + u0i−1

)
+ k wi , (7.36)

where α = c k
h is the Courant number.

6- Develop a computer program that implements this numerical method
with the following simple boundary conditions : w(x) = 0 ∀x ∈ [a, b].

7.2.2 2D equation

The generalisation to 2D is again straightforward for this implicit scheme
following the path presented in Sect. (7.1.2)

7- Give the 2D version of the numerical scheme described by Eq. (7.29).

8- Show that the Courant-Friedrich-Levy criterion can still be written in
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the form of Eq. (7.34) provided that h should be replaced by h =
hx hy√
h2
x+h2

y

as in Eq. (7.23).

9- Generalise your 1D program to solve the wave equations in 2D.

7.3 The advection equation

7.3.1 1D equation

We consider the 1D advection equation for a real function v(x, t) of the
position x and time t given by

∂t v(x, t) + c ∂x v(x, t) = 0 , (7.37)

where the speed c > 0 is assumed to be a constant and where x ∈ [0, L]
with L > 0 and t ≥ t0. We further assume the following periodic boundary
conditions

v(0, t) = v(L, t) for all t ≥ t0 . (7.38)

We must also provide the initial profile
◦
v(x) that will be advected

v(x, t0) =
◦
v(x) , (7.39)

where
◦
v(x) is a given function of space defined on [0, L].

As usual, the numerical approximations to the solution of Eq. (7.37)
will be otained for xi = h i with the spatial step given by h = L

Nx−1 and
i = 0, · · · , Nx − 1. We also have t = t0 + n k where k > 0 is the time step
and n = 0, · · · ,∞. We will note these numerical approximations by uni .

1- It is quite instructive to find the general form of the solution to Eq. (7.37).
We introduce a new set of variables defined by

ϕ = x− c t and (7.40)

µ = x+ c t . (7.41)

1-a) Show that Eq. (7.37) for these variables reduces to the following equa-
tion

∂µ v(µ,ϕ) = 0 . (7.42)

1-b) Prove that the solution to Eq. (7.37) is of this form v(x, t) = ṽ(x−c t)
where ṽ is a function of a real variable.

1-c) Finally, show that the solution to Eq. (7.37) is given by

v(x, t) =
◦
v (x− c (t− t0)) , (7.43)
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where we recall that
◦
v is the initial profile.

2- We make a first try at guessing a method of numerical integration of
Eq. (7.37) like this:

un+1
i − uni

k
+ c

uni+1 − uni−1

2h
= 0 . (7.44)

2-a) Inserting the exact solution v(x, t) in Eq. (7.44) determine the dom-
inant terms in k and h for the truncation error. Show that the method is
consistent.

2-b) Proceed to the von Neumann stability analysis by inserting a Fourier

mode ξnl ej kl x in the scheme Eq. (7.44) and show that the amplification

factor
ξn+1
l

ξn
l

is given by

ξn+1
l

ξnl
= 1− j

c k

h
sin (kl h) , (7.45)

where j =
√
−1.

2-c) Deduce from Eq. (7.45) that this numerical scheme is unconditionally
unstable.

3- The main purpose for using Eq. (7.44) was to obtain a numerical scheme
of order 2 in space. Let’s refrain our ardour and focus first on order 1 (in
space) method by considering the following two numerical schemes

un+1
i − uni

k
+ c

uni − uni−1

h
= 0 (7.46)

un+1
i − uni

k
+ c

un+1
i − un+1

i−1

h
= 0 , (7.47)

which are respectively explicit/implicit methods.

3-a) Insert a Fourier mode ξnl ej kl x in the two above schemes to determine

the corresponding amplification factors
ξn+1
i

ξni
in both cases.

3-b) Show that for Eq. (7.46) and (7.47) we have respectively
∣
∣
∣
∣
∣

ξn+1
l

ξnl

∣
∣
∣
∣
∣

2

= 1− 2α (1− α) [1− cos (kl h)] and (7.48)

∣
∣
∣
∣
∣

ξn+1
l

ξnl

∣
∣
∣
∣
∣

2

= (1 + 2α (1 + α) [1− cos (kl h)])
−1 , (7.49)
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whith the Courant number defined as α = c k
h .

3-c) Deduce from the previous question that:

1. Eq. (7.46) is stable if the CFL condition is fulfilled, i.e. α < 1,

2. Eq. (7.47) is unconditionally stable.

3-d) Develop a computer program that solve the advection equation Eq. (7.37)
together with the boundary conditions Eq. (7.38) based on one of the first
order schemes Eq. (7.48) or (7.49). Chose the initial profile at your conve-
nience. You could use

◦
v(x) =







sin2 (2π x
L ) for 0 ≤ x ≤ L

2

0 for L
2 < x ≤ L

, (7.50)

for instance.

4- We modify slightly the scheme Eq. (7.44), which we recall is unstable,

by replacing uni by the mean
1

2

(
uni+1 + uni−1

)
in the approximation of the

temporal derivative. This new method, named after Lax and Friedrichs, is
given by

un+1
i =

1

2

(
uni+1 + uni−1

)
− 1

2
α
(
uni+1 − uni−1

)
, (7.51)

where α is the Courant number.

4-a) Determine the spatial and temporal orders of this method. Is it
consistent ?

4-b) Study the stability of the scheme Eq. (7.51) in the von Neumann sense
by inserting a mode ξnl ekl x.

4-c) Show that we have
∣
∣
∣
∣
∣

ξn+1
l

ξnl

∣
∣
∣
∣
∣
=

√

1− (1− α2) sin2 kl h . (7.52)

4-d) Deduce from Eq. (7.52) that the CFL condition, i.e. α < 1, must again
be fulfilled for the scheme to be stable.

4-e) Show that Eq. (7.51) can also be interpreted as an approximation to
the following equation

∂t v(x, t) = −c ∂x v(x, t) +
1

2

h2

k
∂2x v(x, t) . (7.53)
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4-f) The diffusive term 1
2

h2

k ∂
2
x v(x, t) introduce numerical diffusion that

stabilises the method. What is the price to pay for using artificial diffusion
? You can base you answer on the behaviour of a Fourier mode (see Eq. 7.52)
as n→ ∞.

4-g) Write a computer program based on the Lax-Friedrichs method. Note
that the scheme needs values on its left (uni−1) but also on its right (uni+1)
which requires a careful implementation of the boundary conditions. You
might want to use ghost cells on either side of the [0, L] domain to ease this
implementation.

7.4 Some useful hints concerning implementation

The idea of this section is to help you in developing the C++ program needed
in the projects of the previous sections. We take the diffusion equation
as examples of 1D and 2D implementations. The extension to other type
of equation is straightforward. In the very few situations where particular
algorithm or tricks are needed for another type of equation we will introduce
the necessary material.

We will try to make the programs as simple as possible in this section. If
you are a C++ expert feel free to express yourself. For “real” codes, perhaps
the input/ouput part must be looked at with more attention, e.g. using a
descent config file for input parameters is extremely usefull. For a large
project, we also need to separate the code in several .h and .cpp files. Of
course, for “real” codes, you might want to use the most advanced features of
C++. With Objected Oriented programming the level of abstraction is high
and generalisation of parts of the program are possible in a very elegant and
efficient manner.

7.4.1 An appetizer : the 1D diffusion equation

The diffusion equation is our first numerical project and we are going to give
you some hand for the implementation of our first numerical scheme given
by Eq. (7.12).

First of all, we need to instruct the autotools that we add another
program, say heat1d, to our project by modifying the src/Makefile.am

file like this

bin PROGRAMS=heat1d
heat1d SOURCES=heat1d . cpp

where heat1d.cpp is the source of this program. Of course, if you already
have some programs you just add heat1d to the list in bin_PROGRAMS by
separating them by spaces.
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Here is the simple structure of the heat1d.cpp file with all the necessary
header files included and the use of the needed name spaces

#inc lude <b l i t z / ar ray . h>
#inc lude <cmath>
#inc lude <c s td l i b>
#inc lude <fs tream>
#inc lude <iostream>
#inc lude <iomanip>

us ing namespace b l i t z ;
us ing namespace s td ;

i n t main ( ) {

// We need to put some code in here !

r e turn EXIT SUCCESS;
}

Now, in the core of the main function we will define the parameters of
our program

i n t nt=1000; // number o f time s t eps
i n t nx=100; // number o f s p a t i a l s t eps
double a=−5.; // l e f t s p a t i a l boundary
double b=5. ; // r i g h t s p a t i a l boundary
double t0 =.1 ; // i n i t i a l i n s t an t
double t=t0 ; // time va lue
double D=1. ; // d i f f u s i o n c o e f f i c i e n t

Please, remember that in C++ there is no need to declare these variables
at the beginning of the code and you could define them wherever you want
to. Here, we simply put them together for clarity.

We showed (see Eq. 7.14) that the stability of the FTCS scheme is ex-
pressed by Dk

h2 < 1
2 . Consequently, we introduce the so-called Courant

number α = Dk
h2 and instead of giving the time step we set it according to

the chosen value of α. We modify the code accordingly

double alpha =.1 ; // Courant number
double dx=(b−a ) /(nx−1.) ; // Spa t i a l g r id s i z e
double dt=alpha ∗dx∗dx/D; // time step

// We i s s u e a warning i f the scheme i s unstab le
i f ( alpha >=.5)

cout << ”WARNING: numer ica l scheme i s unstab le . ”
<< endl ;

We need to store the values of the xi’s and ui’s as well as the values of
the exact solution v(xi). For this purpose we will use blitz++ arrays like
this
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// We de c l a r e them , ’ nx ’ being t h e i r s i z e
Array<double ,1> x (nx ) ,u( nx ) , v ( nx ) ;

Now, we must initialize these arrays, in particular we must start we x

like this

f o r ( i n t i x =0; ix<nx ; ++ix ) x ( ix )=dx∗ i x+a ;

Then, before we start we must code the initial condition to our problem
which is as simple as this

u=v=exp(− .25∗x∗x/D/ t0 ) ;

We must loop on time steps to obtain our numerical solution. If we are
not too careful we might do the following error

f o r ( i n t i t =1; i t<nt ; ++i t ) {
t+=dt ;

// FTCS scheme

// ====================================
// THIS TWO COMMENTED LINES ARE WRONG !
// ====================================

// f o r ( i n t i x =1; ix<nx−1; ++ix )
// u( ix )+=alpha ∗(u ( i x+1)+u( ix −1)−2.∗u( ix ) ) ;

// D i r i c h l e t boundary c ond i t i o n s

double f a c t o r=sq r t ( t0 / t ) ;
u (0 )=f a c t o r ∗exp(− .25∗a∗a/D/ t ) ;
u (nx−1)=f a c t o r ∗exp (− .25∗b∗b/D/ t ) ;

// Theo r e t i ca l s o l u t i o n

v=f a c t o r ∗exp (− .25∗x∗x/D/ t ) ;
}

The loop between ix=1 and ix=nx-2 only is ok because we deal with
Dirichlet boundary conditions so that we do not want to update u(0) and
u(nx-1) according to the numerical scheme but specify them instead. So
what is wrong and why ? As as an exercice take your time to identify the
problem by yourself. For the impatient let’s jump to the next paragraph.

Well indeed,

u( ix )+=alpha ∗(u ( i x+1)+u( ix−1)−2.∗u( ix ) ) ;
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is wrong. The right hand side of this affectation does not use the values
of u at the previous time step as it sould because in the for loop these values
do change. To implement properly the numerical scheme we must store the
values of u at the previous time steps. We need to declare an array before
the for loop like this

Array<double ,1> up (nx ) ;
f o r ( i n t i t =1; i t<nt ; ++i t ) {

// code i s omitted
}

and then replace the loop on ix by

up=u
f o r ( i n t i x =1; ix<nx−1; ++ix )

u( ix )+=alpha ∗(up ( ix+1)+up( ix−1)−2.∗up ( ix ) ) ;

to get the proper implementation of the numerical scheme.

For the readers knowing C++ do not be tempted to declare and initialize
the up array in a row like this

Array<double ,1> up (u) ;

or equivalently like this

Array<double ,1> up=u ;

because in both cases we use the copy constructor. There is nothing wrong
about this perhaps with other libraries but with blitz++ we will break
our code. The reason is that whenever we use the copy constructor with
blitz++, the authors of the library decided that we actually copy the refer-
ence to the array, not the values, with the effect that it would be equivalent
to the wrong code!

Basically that’s all we need to do and actually we have produce our first
working code except for one very important thing we have ignored so far:
writing the numerical results to a file ! Obviously, it is quite useless to do
some numerical computations if we do not store the results. We do this with
the help of a file output stream that we declare like this

o fs t r eam fout ( ”heat1d . dat ” ) ;

where heat1d.dat is the name of the output file.

Before entering the time loop, we must write the initial condition to the
file like this

f ou t << ”# time=” << f i x ed
<< s e t p r e c i s i o n (4 )
<< t << endl ;
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f o r ( i n t i x =0; ix<nx ; ++ix )
fout << x( ix ) << ” ” << u( ix ) << ” ” << v ( ix ) << endl ;

f ou t << endl << endl ;

where << fixed << setprecision(4) is there because we want to store
the time with 4 digits of precision. These are called stream manipulators
and permits such things and much more. With fout << endl << endl;

we add two blanck lines to separate the results between different time. This
is needed because we are going to plot the results with a software called
gnuplot.

Then, we must do the same thing for all other instant within the time
loop with

i n t ntMovie=10;

// code i s omitted . . .

f o r ( i n t i t =1; i t<nt ; ++i t ) {

// code i s omitted . . .

i f ( ! ( i t%ntMovie ) ) {
f ou t << ”# time=” << f i x ed

<< s e t p r e c i s i o n (4 )
<< t << endl ;

f o r ( i n t i x =0; ix<nx ; ++ix )
fout << x ( ix ) << ” ” << u( ix ) << ” ” << v ( ix ) <<

endl ;
f ou t << endl << endl ;

}
}

where we have introduced a new int variable, ntMovie, that allows us to
write the results only every ntMovie time steps. Well, yeah, it is called
movie because we can produce a movie out of our results of course as we
plan to do below.

To compile our code we simply use the make command and launch our
program heat1d by invoking its name on the command line. At this point
you should get a file named heat1d.dat containing our results.

7.4.2 Whose afraid of implicit schemes ?

For implicit schemes such as BTCS or Crank-Nicolson we must solve a linear
system of equations for the un+1. In fact, for the 1D diffusion equation we
obtain a tridiagonal system that we can solve by a direct method due to
Thomas. In more general situation we cannot do that, especially for more
than one dimension. There are some very efficient libraries to solve for linear
system of equations such as
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• http://www.mcs.anl.gov/petsc/,

• http://www.netlib.org/lapack/,

• http://www.gnu.org/software/gsl/,

• etc . . .

and definitely we will not compete with them and advise you to use them
in actual research work if you can. However, for this series of lectures we
will use the Gauss-Seidel method because for finite difference equation it is
quite easy to implement and it is furthermore sufficiently efficient for our
present task. So let’s go for it, even in 1D, though there exist better ways.

We define the Courant number by α = Dk
h2 . We can write the BTCS

scheme Eq. (7.15) in the following way

un+1
i =

1

1 + 2α

[
α
(
un+1
i+1 + un+1

i−1

)
+ uni

]
. (7.54)

In this particular case we do not have to write the linear system for the
uni explicitly. After a little algebra, you can convince yourself that Eq. (7.54)
provide us the iterative algorithm showing up in the Gauss-Seidel method
(see Sect. 3.3.1 for more details).

The algorithm can be summarized by

1. We initialize the solutions, i.e. ūi, to u
n
i the value at the present time

step.

2. Then we iterate on the ūi value according to the following relation
obtained from Eq. (7.54)

ūi =
1

1 + 2α
[α (ūi+1 + ūi−1) + uni ] . (7.55)

3. We stop when ūi as converged to a prescribed level of precision.

Yeah, it is simple but it has got a price. Since we have an iterative algorithm
we introduce a supplementary error in the process. It is not that critical
for the present application but it is better to be aware of this new source of
error in case we need to control the level of precision more carefully.

Now in C++ this algorithm can be traduced e.g. in the following way

const i n t kmax=1000;
double eps=1.e−8;
double r e r r =0. ;
double beta =1./(1 .+2.∗ alpha ) ;
Array<double ,1> u l a s t ;

// =======================
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// Gauss−s e i d e l i t e r a t i o n s
// =======================

in t k=0;
do {

r e r r =0. ;
u l a s t=u ;

f o r ( i n t i x =1; ix<nx−1; ++ix ) {
u( ix )=beta ∗( alpha ∗(u ( i x+1)+u( ix −1))+up ( ix ) ) ;
double r d i f f=fabs ( ( u ( i x )−u l a s t ( i x ) ) / u l a s t ( i x ) ) ;
r e r r=Max( r d i f f , r e r r ) ;

}
} whi le ( r e r r>eps && ++k <= kmax) ;

We iterate until we reach the prescribed precision, here 10−8, or we reach
a given number of Gauss-Seidel iterations, just in case we were to greedy
concerning the precision we can obtain.

We must define the Max function that does not exist in C++ (before the
main function) with

template <typename T> T Max( const T& a , const T& b) {
r e turn ( a>b ? a : b) ;}

Yes, we know. These are templates. Do not be scared though. This
line just instructs the compiler to generate the Max and Min function for any
type T (or class) that has comparison operators such as < or >.

We took the example of the BTCS sheme but of course, you can easily 2

adapt the above consideration and algorithm to the Crank-Nicolson scheme
or any other scheme.

7.4.3 Going 2D

As an example, we will use the implementatoin of the 2D wave equation.
Basically, going form 1D to 2D is as simple as using matrices instead of
vectors.

First, let’s code the basic structure of the code

#inc lude <b l i t z / ar ray . h>
#inc lude <cmath>
#inc lude <c s td l i b>
#inc lude <fs tream>
#inc lude <iostream>
#inc lude <iomanip>

us ing namespace b l i t z ;
us ing namespace s td ;

2Certainly we are afraid you have too if asked in class !
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i n t main ( ) {

// Code miss ing . . .

r e turn EXIT SUCCESS;
}

We have all the necessary includes and namespaces set up. As in 1D
we need to declare and initialize some variables

i n t nt=1000; // number o f time s t eps
i n t ntMovie=10; // we wr i t e the r e s u l t s every ’ ntMovie ’

time s t eps .
i n t nx=128; // number o f x s t eps
i n t ny=128; // number o f y s t eps
double xMin=−5.; // min va lue f o r x
double xMax=5. ; // max va lue f o r x
double yMin=−5.; // min va lue f o r y
double yMax=5. ; // max va lue f o r y
double t0 =0. ; // i n i t i a l time
double c =1. ; // propagat ion speed

Array<double ,1> x (nx ) , y (ny ) ; // vec to r s t o r i n g x and y
va lue s

Array<double ,2> u(nx , ny ) ; // our numer ica l s o l u t i o n

double dx=(xMax−xMin) /(nx−1.) ; // x step
double dy=(yMax−yMin) /(ny−1.) ; // y step

f o r ( i n t i x =0; ix<nx ; ++ix ) x ( ix )=dx∗ i x+xMin ; // x ar ray
f o r ( i n t i y =0; iy<ny ; ++iy ) y ( iy )=dy∗ i y+yMin ; // y ar ray

double alpha =.1 ; //Courant number
double h=dx∗dy/ s q r t ( dx∗dy+dy∗dy ) ;

double dt=alpha ∗h/c ; / time step s e t from alpha

// Use fu l v a r i a b l e s used below
// that avoid to recompute the s e
// q u a n t i t i e s a l l the time .

double alphaX=dt∗ c/dx ;
double alphaY=dt∗ c/dy ;
double alphaX2=alphaX∗alphaX ;
double alphaY2=alphaY∗alphaY ;
double alpha2=alpha ∗ alpha ;

Before we start to integrate, we need to handle the initial condition
carefully. Remember that we want to implement a two-step method. In
practice, this means we need to store not only the value of our numerical
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solution at tn but also at tn−1 and tn−2. We will use a Gaussian profile as
an initial condition 3 like this

Array<double ,2> u0 (nx , ny ) ; // s o l u t i o n at t {n−2}
Array<double ,2> u1 (nx , ny ) ; // s o l u t i n o at t {n−1}
double sigma=1. ; // sigma o f the Gaussian
double sigma2=sigma∗ sigma ; // square o f i t

// Gaussian p r o f i l e

double x0=0. ; // x cente r o f the Gaussian
double y0=0. ; // y cente r o f the Gaussian

// Gaussian i n i t i a l i s a t i o n

f o r ( i n t i x =0; ix<nx ; ++ix ) {
double deltaX2=x( ix )−x0 ;
deltaX2∗=deltaX2 ;
f o r ( i n t i y =0; iy<ny ; ++iy ) {

double deltaY2=y ( iy )−y0 ;
deltaY2∗=deltaY2 ;
u0 ( ix , i y ) =.1∗exp (− .5∗( deltaX2+deltaY2 ) / sigma2 ) ;

}
}

We are not through yet because remember that the wave equation being
order two in time we also need to initialize our numerical scheme by setting
the derivative to given value, 0 in our case. This goes like this

boundaryConditions (x , y , u0 ) ;
// Der iva t i v e at t=0 i s equa l to 0
f o r ( i n t i x =0; ix<nx ; ++ix )

f o r ( i n t i y =0; iy<ny ; ++iy )
u1 ( ix , i y )=(1.−alpha2 ) ∗u0 ( ix , i y )

+.5∗alphaX2 ∗( u0 ( ix+1, i y )+u0 ( ix −1, i y ) )+
+ .5∗ alphaY2 ∗( u0 ( ix , i y+1)+u0 ( ix , iy−1) ) ;

boundaryConditions (x , y , u1 ) ;

We have introduce a helper function 4, boundaryConditionswhose pur-
pose is to implement the Dirichlet boundary condition. We impose that our
solution must be 0 on the boundary. The declaration and definition of the
function can be placed before the main function and looks like this

void boundaryConditions (Array<double ,1>& x ,
Array<double ,1>& y ,

3Note, that in this case we will not “respect” strictly our boundary conditions . . .
4In more fancy code, everything would be embedded in a class and we will use “meth-

ods” of this class.
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Array<double ,2>& u) {

i n t nx=x . s i z e ( ) ;
i n t ny=y . s i z e ( ) ;

f o r ( i n t i y =0; iy<ny ; ++iy ) {
u (0 , i y ) =0. ; // l e f t
u(nx−1, i y ) =0. ; // r i g h t

}

f o r ( i n t i x =0; ix<nx ; ++ix ) {
u( ix , 0 ) =0. ; // bottom
u( ix , ny−1)=0. ; // up

}

}

Note the & symbol in the argument list of the function as in

Array<double ,1>& x

which means that we pass a reference on the array rather than the array
value. We do this because for large arrays (i.e. large nx and ny), without
the & we would ask to make a copy of the arrays and this can be very time
consuming. In “pure” C, everythings is passed by reference so the way one
does this is by passing the value of the pointer to the objects. However, we
need to deference the pointer with the * operator or ->. Sincerely, the C++
reference is welcomed here because it simplifies everything and avoid the
copy of large arrays.

We need to do the time integration with the following code

double t=t0 ;

double beta =2.∗(1.−alpha2 ) ;
f o r ( i n t i t =2; i t<nt ; ++i t ) {

t+=dt ;

// Our numer ica l scheme

f o r ( i n t i x =1; ix<nx−1; ++ix )
f o r ( i n t i y =1; iy<ny−1; ++iy )

u( ix , i y )=beta ∗u1 ( ix , i y )+
+alphaX2 ∗( u1 ( ix +1, i y )+u1 ( ix −1, i y ) )
+alphaY2 ∗( u1 ( ix , i y+1)+u1 ( ix , iy−1))
−u0 ( ix , i y ) ;

// D i r i c h l e t boundary c ond i t i o n s

boundaryConditions (x , y , u ) ;
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// We s t o r e the va lue s at the pr ev i ous time s t eps .

u0=u1 ;
u1=u ;

// Writing r e s u l t s every ’ ntMovie ’ time s t eps .
i f ( ! ( i t%ntMovie ) ) wr i t eResu l t s ( fout , x , y , u , t ) ;

}

We have introduce another function writeResults whose name is self-
explanatory. We assume that an output stream as been defined like this

o fs t r eam fout ( ”wave2d . dat ” ) ;

in order to write our results in a file. The definition of the function is the
following

void wr i t eResu l t s ( o f s t r eam& fout ,
Array<double ,1>& x ,
Array<double ,1>& y ,
Array<double ,2>& u ,
double t
) {

i n t nx=x . s i z e ( ) ;
i n t ny=y . s i z e ( ) ;

f ou t << ”# time=” << f i x ed << s e t p r e c i s i o n (4 ) << t <<
endl ;

// Data gnuplot format

f o r ( i n t i x =0; ix<nx ; ++ix ) {
f o r ( i n t i y =0; iy<ny ; ++iy )

fout << x ( ix ) << ” ”
<< y ( iy ) << ” ”
<< u( ix , i y ) << endl ;

f ou t << endl ;
}

f ou t << endl ;
}

Of course, you can write your results as you like. In the present case we
are trying to please our gnuplot friend. If we want to have the solution at
the two first time steps we must write them to the file before the time loop
like this

wr i t eResu l t s ( fout , x , y , u0 , t ) ;
t+=dt ;
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wr i t eResu l t s ( fout , x , y , u1 , t ) ;

right after the double t=t0; declaration.

That’s it. If you want to have a look at your results, and even produce
a movie out of your data you need to have a look at the next section about
gnuplot.

7.5 Visualizing the results with gnuplot

7.5.1 Simple 2D plots

To visualize our results now we will use the gnuplot software. We already
prepare our files to please gnuplot so it is actually quite easy to produce a
plot for a given time step. First you need to start gnuplot by invoking its
name on the command line and then at the gnuplot> prompt type this

p lo t ”heat1d . dat ” us ing 1 :2 index 20
r ep l o t ”heat1d . dat ” us ing 1 :3 index 20 with l i n e s l i n e c o l o r

3

which instruct gnuplot to plot our numerical approximation as red crosses
and the theoretical solution superimposed in a continuous blue line.

At the time of writing these lecture notes, both authors were not gnuplot
users at all and we chose it for its famous simplicity of use. At first site,
you might find the look of the default figures produced with gnuplot quite
uncertain to put it that way. Yeah, that’s true but with some bit of effotr
you can obtain some terrific plots that you will not be ashamed of showing
in a publication. Everything is a matter of taste of course, but let’s try this

p lo t ”heat1d . dat ” us ing 1 :2 i 20 lw 2
r ep l o t ”heat1d . dat ” us ing 1 :3 i 20 w l l c 3 lw 3 l t 1
s e t t i c s out
s e t t i c s s c a l e 1 . 5
s e t mxtics 5
s e t mytics 5
s e t p o i n t s i z e 1 . 5
s e t border l i new idth 1 .5
unset key
s e t s i z e square
s e t x l a b e l ”x”
s e t y l a b e l ”v (x ) ”
s e t t i t l e ”Heat equat ion”
r ep l o t

You might want to put the results in a postscript file for instance, in
that case you could try this
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s e t te rmina l p o s t s c r i p t eps enhanced co l o r font ”Bookman−
Light ” 18

s e t output ”heat1d . eps ”
r ep l o t

and you can have a look at the results if you have the gv command installed
(most certainly on a linux system you have) with

gnuplot> ! gv heat1d . eps

We can do much better concerning the quality of the plot. With gnuplot we
can generate a LATEX file that once compiled produce a better postscript file
like this

s e t x l a b e l ”$x$”
s e t y l a b e l ”$v (x ) $”
s e t te rmina l e p s l a t e x s tanda lone c o l o r
s e t output ”heat1d . tex ”
r ep l o t

Note that for e.g. the x label we used $x$ which is the way to handle math-
ematical formulas in LATEX. In our case it has only the effect of selecting the
special fonts used my LATEX to print formulas. However it would be possible
to put any kind of mathematical symbols or formula as we would do with
LATEX except that we must escape the “\” symbol. For instance to print the

fraction
x

y
you need to use $\\frac{x}{y}$.

Then, we need to flush 5 the .tex output file with

unset output

or simply exit gnuplot and do the following on the command line

> l a t e x heat1d . tex
> dv ips −E heat1d . dvi −o heat1d . eps

to produce an encapsulated postcript file that is shown in Fig. (7.1).

7.5.2 3D plots

“3D” plot means that we plot a function of the two variables x and y for
instance. We can generate some color maps or plot the surface of the function
or a mix of both. Again, with gnuplot it is relatively easy. Let’s use our
results for the 2D wave equation.

If you just want to have a look at the data, say for the time step 200, it
is indeed quite easy. You just need to invoke the two following command

5This is a trick without which the LATEX file would not be complete and could not be
compiled.
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Figure 7.1: eps figure produced with gnuplot.

s e t pm3d map
sp l o t ”wave2d . dat ” index 200

pm3d is a plotting style for the visualisation of 3D data. Here we require
to plot a map and we tell gnuplot to do so with the first line. Then, the
real plotting is carried out with splot.

If you feel that this is very easy perhaps you also think it is not very
pretty. However, you can again use the epslatex terminal to get “quality-
of-publication” eps figure, I think. You can do this with

s e t t i c s s c a l e 1 . 5
s e t p o i n t s i z e 1 . 5
s e t border l i new idth 1 .5
s e t t i c s out
s e t mxtics 5
s e t mytics 5
s e t mcbtics 5
s e t nokey
s e t s i z e square

# Needed to p lo t the contours

s e t cntrparam cub i c s p l i n e
s e t cntrparam l e v e l auto 10
unset c l a b e l
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2D wave equation
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Figure 7.2: 2D wave equation. This image is obtained with the epslatex

terminal.

s e t contour base
s e t t i t l e ”2D wave equat ion”

s e t xrange [ −5 :5 ]
s e t yrange [ −5 :5 ]
s e t x l a b e l ”$x$”
s e t y l a b e l ”$y$”
s e t pm3d map

sp l o t ”wave2d . dat ” index 200 l inew idth 2 l c r gbco l o r ” b lack
”

s e t te rmina l e p s l a t e x s tanda lone c o l o r
s e t output ”wave2d . tex ”
r ep l o t
unset output

! l a t e x wave2d . tex
! dv ips −E wave2d . dvi −o wave2d . eps

You can see the results in Fig. (7.2).
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For some results, the map representation of Fig. (7.2) is probably not
the best one. Since the 2D wave equation with fixed Dirichlet boundary
conditions is a model for the movement of a square drum skin we might
want to represent the surface of the skin. We can do that in gnuplot with
the pm3d style. We must change the plotting instructions in the previous
gnuplot script in that way

s e t pm3d
s e t xyplane at 0 .
unset contour
s p l o t ”wave2d . dat ” index 210 every 3 : 3 with l i n e s l c

r gbco l o r ” b lack”

We have added an option to the splot command : every 3:3. We have
a spatial grid of 100×100 which is too much if we want to overlay the surface
mesh because we would fill the whole surface with the lines that trace the
surface mesh. With every 3:3 we tell gnuplot to plot only every 3 data
blocks ( corresponding to a given x) and every 3 lines (corresponding to a
given y) within each data block. This is coherent with the way we wrote
the data, the so-called “grid data” format of gnuplot. Ok, we do not show
all the available information but at least we get a reasonably neat and clean
plot.

It is just an example of what you can do with gnuplot and finally data
representation is a subject by itself clearly out of the scope of this course.
One has to play and see what is the best representation for the data under
consideration. I found that pictures as in Fig. (7.3) are best suited when
producing animation because the surface mesh help in seeing the deforma-
tions of the “drum skin”. Finally, it is a matter of taste and you will have
to experiment with gnuplot and find your way.

7.5.3 How to generate a movie

Since our results are time dependent the natural way of visualizing them is
to generate a movie. We chose to use a mixed of bash scripting and gnuplot

to produce all the necessary pictures (in .png format). For the encoding of
the movie we use the avcon library, previously known as ffmpeg that you
can found here http://libav.org so you must check that it is installed on
your system 6.

Here is the bash script for generating a movie out of our output file. It is
kind of cryptic, certainly not on purpose, but it is unfortunately unavoidable
with shell scripting.

Take it as a template that you can adapt to suit your own preferences and
needs. We will definitely not explain how it works because bash scripting is

6If it is old enough, it is certainly still called ffmpeg.
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Figure 7.3: 2D wave equation with surface plot and mesh.

clearly out of the scope of these lecture notes. We apologize for the “esoteric”
nature of the script but here it goes

#!/ bin/bash

de c l a r e −a timeArray
timeArray=( ‘ grep ’ time=’ $1 | sed ’ s / //g ’ − ‘)
nTime=${#timeArray [ ∗ ] }

f o r ( ( i =0; i<$nTime ; ++i ) ) ; do
timeArray [ $ i ]=${ timeArray [ $ i ]##∗=}

done

N=$ ( grep ’ˆ$ ’ $1 | wc − l )
( (N/=2) )

nDig i t s =0;
f o r ( ( i=N; i>=1; i=i /10) ) ; do

((++nDig i t s ) ) ;
done
((−−nDig i t s ) )

f o r ( ( i =0; i<$N ; ++i ) ) ; do
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f i l e=${1%.∗} ‘ p r i n t f ”%0${ nDig i t s }d” ” $ i ” ‘ ” . png”
echo ”Creating ” $ f i l e
gnuplot << GNUPLOTSCRIPT

s e t termina l png enhanced t r anspa r ent font ’Times , 1 8 ’
s e t output ” $ f i l e ”

s e t s t y l e l i n e 1 l c r gbco l o r ” blue ” l t 1 lw 1
s e t s t y l e l i n e 2 l c r gbco l o r ” red ” l t 1 lw 2
s e t t i c s out

s e t t i c s s c a l e 2 .
s e t mxtics 5
s e t mytics 5
s e t p o i n t s i z e 2 .
s e t border l i new idth 2 .

s e t key box r ev e r s e

s e t yrange [ 0 . : 1 . ]
s e t x l a b e l ”x”
s e t y l a b e l ”v (x ) ”
s e t t i t l e ”Heat equat ion ( t=${ timeArray [ $ i ] } ) ”

p lo t ’ $1 ’ us ing 1 : 2 index $ i l i n e s t y l e 1 t i t l e ”FTCS” , \
’ $1 ’ us ing 1 : 3 index $ i l s 2 with l i n e s t i t l e ” exact”

GNUPLOTSCRIPT
done

output=${1%.∗}”%”0${ nDig i t s }d” . png”
movie=$ {1%.∗} . av i

p r i n t f ”Encoding the ’ ${movie } ’ f i l e . . . ”

avconv −y −f image2 − i $output −b 8192k $movie &>/dev/ nu l l

p r i n t f ” done !\n”
\rm ${1%.dat }∗ . png

Let’s name this script makemovie for instance. Do not forget to make it
executable with

> chmod +x makemovie

and use it like this to produce a heat1d.avi file

> makemovie heat1d . dat
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that you can visualize with your favourite movie player (e.g. for linux: xine,
totem, vlc, . . . ).

We can now generate a movie for 2D data. However, this bash script
must be adapted when dealing from one kind of data to another, e.g. for
3D data: map or surface plots. Of, course with bash you can generalised
everything as you like and develop a script that will handle any kind of
situations and data. We will not enter into all this details but the above
script can be the basis for fancier bash script of your owrn.
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