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Interactions between 
electrons and photons

Thomson & Compton scattering

Inverse Compton effect

The interaction between particles and light is able to scatter photons from lower to 

higher energies (or vice versa) in interactions with electrons of higher (or lower) 
energies. The kind of interaction between photons and electrons depends from their 

relative energy: if the electrons is (nearly) not moving, we will speak about Thomson 

or Compton scattering as a function of the photon energy. If the electron is moving 
at high speed, we will be in the Inverse Compton case.

Compton scatteringThomson scattering



Matter-photon interactions

Photo-electric effect



Matter-photon interactions

Compton scattering



Matter-photon interactions
photo-electric effect or Compton scattering?

Compton scattering

Photo-electric effect



Matter-photon interactions

Thomson scattering



Thomson scattering

It is the interaction of an electron at rest with 
a low energy photon:

The incident photons can be considered as a 
continuous e.m. wave. When an e.m wave is 

incident on a charged particle, the electric and 

magnetic components of the wave exert a 
Lorentz force on the particle, setting it into 

motion. Since the wave is periodic in time, so is 

the motion of the particle, that will oscillate. The 
particle is accelerated and consequently emits 

radiation: energy is absorbed from the incident 
wave by the particle and re-emitted as e.m. 

radiation. Such a process is clearly equivalent to 

the scattering of the e.m. wave by the particle.

hν << mec
2



The main cause of acceleration of 
the particle will be due to the 

electric field component, along 
whose direction the particle will 

oscillate ➝ parallel dipole 
radiation polarized along the 

direction of motion of the particle

Thomson scattering



Thomson scattering

The electron oscillates with an acceleration due to the electric field of the e.m. wave:

The electron radiates photons at the same frequency than the incoming radiation:
 the energy of the incoming and radiated photons is the same. 

The mean radiated power is the power of a dipole subject to an acceleration of amplitude: 

a =
eE

me



Thomson scattering

The electron oscillates with an acceleration due to the electric field of the e.m. wave:

The electron radiates photons at the same frequency than the incoming radiation:
 the energy of the incoming and radiated photons is the same. 

The mean radiated power is the power of a dipole subject to an acceleration of amplitude: 

a =
eE

me

Larmor’s formula 
[W]

FP = �0 c E2 Magnitude of 
Poynting vector 
[W/m2]

σT =
P
FP

=
8π

3
r2
e = 6.6525× 10−29 m2

re =
1

4π�0

e2

mec2
= 2.8179× 10−15 m

Thomson cross section

Classical radius of the electron



Scattering from electrons at rest
Quantum effects

Thomson scattering

Compton scattering

Quantum effects appear in two ways:

kinematics of the scattering process

alteration of the cross sections
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Compton scattering
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Fig.9.1: Astrophysics Processes (CUP), © H. Bradt 2008

The kinematic effects occur because a photon possesses a 
momentum (hc/ν) as well as an energy (hν)

hν + mc2 = hνs + γmc2 (Energy conservation)

hν

c
=

hνs

c
cosθ + γ β m c cosφ (Longitudinal momentum)

0 =
hνs

c
sinθ − γ β m c sinφ (Transverse momentum)

Collision of a photon with a stationary free electron:
both the electron and the photon are treated as particles
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Collision of a photon with a stationary free electron:
both the electron and the photon are treated as particles

hν + mc2 = hνs + γmc2 (Energy conservation)

hν

c
=

hνs

c
cosθ + γ β m c cosφ (Longitudinal momentum)

0 =
hνs

c
sinθ − γ β m c sinφ (Transverse momentum)

(a)

(b)

(c)

Solve (b) for cosΦ and (c) for sinΦ ; remember! cos2Φ + sin2Φ = 1 ➝ (bc)’

Square (a) with the γmc2 term isolated on the right side ➝ (a’)

(a’) - (bc)’
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Collision of a photon with a stationary free electron:
both the electron and the photon are treated as particles

hν + mc2 = hνs + γmc2 (Energy conservation)

hν

c
=

hνs

c
cosθ + γ β m c cosφ (Longitudinal momentum)

0 =
hνs

c
sinθ − γ β m c sinφ (Transverse momentum)

(a)

(b)

(c)

hνs =
hν

1 + hν
mc2 (1− cosθ)

1
hνs

− 1
hν

=
1− cosθ

mc2

Compton scattering
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Collision of a photon with a stationary free electron:
both the electron and the photon are treated as particles

hνs =
hν

1 + hν
mc2 (1− cosθ)

λs − λ =
h

mc
(1− cosθ)

Result relativistically correct

λc =
h

mc
= 2.43× 10

−12
m→ c

λc
= 1.23× 10

20
Hz→ 0.511 MeV

Compton wavelength



Compton scattering

Collision of a photon with a stationary free electron:
both the electron and the photon are treated as particles

hνs =
hν

1 + hν
mc2 (1− cosθ)

The scattered photon energy is 
shifted significantly as the incident 

photon energy becomes 
comparable to the rest energy of 

the electron 

A significant fractional loss requires 
a high photon energy and a 
substantial scattering angle



Scattering from electrons at rest
Quantum effects

Thomson scattering

Compton scattering

Quantum effects appear in two ways:

kinematics of the scattering process

alteration of the cross sections



Compton scattering
Klein-Nishina cross section

λs − λ =
h

mc
(1− cosθ)
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λc =
h

mc
= 2.43× 10

−12
m→ c

λc
= 1.23× 10

20
Hz→ 0.511 MeV

→ wavelength change of the order of λC upon scattering

For long wavelengths (λ >> λC i.e. hν << mc2) the scattering is closely elastic. 
When this condition is satisfied, we can assume that there is no change in the 
photon energy in the rest frame of the electron (cf. rest of the lesson)

However, it can be shown in quantum electrodynamics that, as the photon 
energy becomes large (hν >> mc2), the Compton scattering becomes less 
efficient (the cross section is reduced from its classical value - Klein-Nishina 
formula)



Compton scattering
Klein-Nishina cross section

σ = σT ×
3
4

�
1 + x

x3

�
2x(1 + x)

1 + 2x
− ln(1 + 2x)

�
+

1
2x

ln(1 + 2x)− 1 + 3x

(1 + 2x)2

�

σ ≈ σT

�
1− 2x +

26x2

5
+ . . .

�
, x << 1

σ =
3
8
σT x−1

�
ln2x +

1
2

�
, x >> 1

x ≡ hν/mc2



Inverse Compton scattering

If the moving electron has an energy significantly higher than the incoming 
photon (in the case of relativistic electrons), energy is transferred from the 

electron to the photon, i.e. it is the opposite of the Compton scattering

It is the interaction of photon with a fastly moving electron !

hν << γ mec
2



Inverse Compton scattering

We restrict our development to:

Head-on collisions of electrons 
and photons

Electrons that are highly relativistic 
(v ~ c)

 Inverse Compton Effect
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Initial electron speed 
parameter and energy

Initial photon energy



Inverse Compton scattering
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Inverse Compton scattering
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β = v/c

Eel = γmc2

Eph = hν

Initial electron speed 
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Initial photon energy

hν� =
�
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hν�
s =
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Compton scatter in S’

hνs =
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1 + hν
mc2 (1− cosθ)

θ� = π



Inverse Compton scattering
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Inverse Compton scattering
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Inverse Compton scattering

hν� =
�

1 + β
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�
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=
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→ hνs ≈ 2γhν�
s = 2γ

hν�

1 + 2hν�

mc2

≈ 4γ2 hν

1 + 4γhν
mc2



Inverse Compton scattering

hνs ≈ 4γ2 hν

1 + 4γhν
mc2 4γhν << mc2

hνs ≈ 4γ2h ν = 4
�

U

mc2

�2

hν

�
1 + β

1− β

�1/2

=
�

1 + β

1− β

�1/2

×
�

1 + β

1 + β

�1/2

=
1 + β

(1− β2)1/2
β ≈ 1

2γ

U = γmc2

The energy of the photon is 
increased by γ2

Each factor γ can be attributed to one 
Doppler-shift transformation



Inverse Compton scattering

hνs ≈ 4γ2h ν = 4
�

U

mc2

�2

hν
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hνs ≈
hν

4γ2



Inverse Compton scattering

hνs ≈ 4γ2h ν = 4
�

U

mc2

�2

hν
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hνs ≈
hν

4γ2

Much more frequent !



Inverse Compton scattering

hνs ≈ 4γ2h ν = 4
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U

mc2

�2

hν
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hνs ≈
hν

4γ2

hνs,iso =
4
3
γ2h ν

4γhν << mc2 β ≈ 1



Inverse Compton
Full derivation power for single scattering
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Inverse Compton
Full derivation power for single scattering
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Inverse Compton
Full derivation power for single scattering
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Inverse Compton
Full derivation power for single scattering

υ d� = density of photons having energy in the range d�

n(p) = photon phase distribution funtion

υ d� = n dp3

υ d�

�
=

υ� d��

�� = Lorentz invariant
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Inverse Compton
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X-ray emission:
thermal intracluster medium Thermal SZ effect

Thermal Sunyaev-Zel’dovich 
effect

Tr = 2.73 K

hνav = 2.70 kT = 6.4× 10−4eV≈ 5 keV electrons

γ = (mc2 + Ek)/mc2 = 1.01



Inverse Compton scattering

hν� =
�

1 + β

1− β

�1/2

hν First Doppler shift

hν�
s =

hν�

1 + 2hν�

mc2

Compton scatter in S’

hνs =
�

1 + β

1− β

�1/2

hν�
s

Second Doppler shift

�
1 + β

1− β

�1/2

=
�

1 + β

1− β

�1/2

×
�

1 + β

1 + β

�1/2

=
1 + β

(1− β2)1/2
β ≈ 1

2γ

→ hνs ≈ 2γhν�
s = 2γ

hν�

1 + 2hν�

mc2

≈ 4γ2 hν

1 + 4γhν
mc2



Thermal Sunyaev-Zel’dovich 
effect

Isotropy of CMB ➝ 

total number of photons 
arriving at the observer 

unchanged 

BUT 

some of them have 
undergone scattering

ν

νs

ν

νs

e–

Plasma

(a)

(c)
I!IBB

Log I

Log νobs θθcluster

"Tr

(d)

ν/ν0
0.6     0.8     1.0     1.2     1.4     1.6

K(ν/ν0)

4

3

2

1

0

(b)

ν

"(log I) = "(log T  )r

Sunyaev-Zel’dovich Effect

Fig.9.7: Astrophysics Processes (CUP), © H. Bradt 2008
(b,d) R. Sunyaev & Y. Zel’dovich in ARAA 18, 537 (1980)
(c) E. L. Wright, pvt. comm.



Energy transfer in thermal ICM
Compton parameter

y ≡ (average fractional energy change per scattering)× (mean numbers of scattering)

τICM

� L

0
neσT dl

∆�

�
= − �

mc2
+

αkT

mc2



Energy transfer in thermal ICM
Compton parameter

y ≡ (average fractional energy change per scattering)× (mean numbers of scattering)

∆�

�
= − �

mc2
+

αkT

mc2

�1 =
�

1 + �
mc2 (1− cosθ)

≈ �
�
1− �

mc2
(1− cosθ)

�

�1 − �

�
=

�
�
1− �

mc2 (1− cosθ)
�
− �

�
= 1− �

mc2
(1− cosθ)− 1

< cosθ >= 0 →
�

∆�

�

�
= − �

mc2



Energy transfer in thermal ICM
Compton parameter

y ≡ (average fractional energy change per scattering)× (mean numbers of scattering)

∆�

�
= − �

mc2
+

αkT

mc2

hν� =
�

1 + β

1− β

�1/2

hν First Doppler shift

hν�
s =

hν�

1 + 2hν�

mc2

Compton scatter in S’

hνs =
�

1 + β

1− β

�1/2

hν�
s

Second Doppler shift

�� ≈ γ� << mc2 ��
1 ≈ ��

Head-on collisions

�
∆ν

ν

�

+

=
νS − ν

ν
=

2β

1− β



Energy transfer in thermal ICM
Compton parameter

y ≡ (average fractional energy change per scattering)× (mean numbers of scattering)

∆�

�
= − �

mc2
+

αkT

mc2

First Doppler shift

hν�
s =

hν�

1 + 2hν�

mc2

Compton scatter in S’

Second Doppler shift

�� ≈ γ� << mc2 ��
1 ≈ ��

Overtaking collisions

hνs =
�

1− β

1 + β

�1/2

hν�
s

hν� =
�

1− β

1 + β

�1/2

hν

�
∆ν

ν

�

−
=

νS − ν

ν
= − 2β

1 + β



Energy transfer in thermal ICM
Compton parameter

y ≡ (average fractional energy change per scattering)× (mean numbers of scattering)

∆�

�
= − �

mc2
+

αkT

mc2

Mean between head-on & overtaking collisions

�
∆ν

ν

�

−
=

νS − ν

ν
= − 2β

1 + β

�
∆ν

ν

�

+

=
νS − ν

ν
=

2β

1− β

�
∆ν

ν

�

av

=
1
2

��
∆ν

ν

�

+

+
�

∆ν

ν

�

−

�
= · · · = 2

β2

1− β2
← 2β2 (β2 <<< 1)

β2 =
v2

c2
≈ kT/m

c2 (< mv2/2 >= 3kT/2)



Energy transfer in thermal ICM
Compton parameter

y ≡ (average fractional energy change per scattering)× (mean numbers of scattering)

∆�

�
= − �

mc2
+

αkT

mc2

Photons & electrons are in thermal equilibrium & interact only through scatter:
no net energy transferred from photons to electrons < Δε>=0

< � >=
�

�dN
d� d�

�
dN
d� d�

= 3kT

< �2 >=
�

�2 dN
d� d�

�
dN
d� d�

= 12 (k T )2

N(E) for thermal distribution of ultrarelativistic particles

< ∆� >= −< �2 >

mc2
+

αkT

mc2
< � >=

3kT

mc2
(α− 4)kT = 0→ α = 4



Energy transfer in thermal ICM
Compton parameter

y ≡ (average fractional energy change per scattering)× (mean numbers of scattering)

∆�

�
= − �

mc2
+

αkT

mc2

(∆�)NR =
�

mc2
(4kT − �)

kT >> �

Energy transferred from electrons to photons Energy transferred from photons to electrons

kT << �



Energy transfer in thermal ICM
Compton parameter

y ≡ (average fractional energy change per scattering)× (mean numbers of scattering)

(∆�)R ∼
4
3
γ2�

< γ2 >=
< �2 >

(mc2)2
= 12

�
kT

mc2

�2

< �2 >=
�

�2 dN
d� d�

�
dN
d� d�

= 12 (k T )2( )

(∆�)R ∼ 16�

�
kT

mc2

�2



Energy transfer in thermal ICM
Compton parameter

y ≡ (average fractional energy change per scattering)× (mean numbers of scattering)

∆�

�
= − �

mc2
+

αkT

mc2

(∆�)NR =
�

mc2
(4kT − �)

kT >> �

Energy transferred from electrons to photons Energy transferred from photons to electrons

kT << �



Energy transfer in thermal ICM
Compton parameter

y ≡ (average fractional energy change per scattering)× (mean numbers of scattering)

τICM

� L

0
neσT dl

∆�

�
= − �

mc2
+

αkT

mc2



Thermal Sunyaev-Zel’dovich 
effect

Isotropy of CMB ➝ 

total number of photons 
arriving at the observer 

unchanged 

BUT 

some of them have 
undergone scattering

�
∆ν

ν

�

av

=
4kTe

mc2

Average fractional 
frequency shift 

�
∆ν

ν

�

av

=
4kTe

mc2
τ

Average fractional photon 
frequency shift in Maxwellian 

electron gas

ν

νs

ν

νs

e–

Plasma

(a)

(c)
I!IBB

Log I

Log νobs θθcluster

"Tr

(d)

ν/ν0
0.6     0.8     1.0     1.2     1.4     1.6

K(ν/ν0)

4

3

2

1

0

(b)

ν

"(log I) = "(log T  )r

Sunyaev-Zel’dovich Effect

Fig.9.7: Astrophysics Processes (CUP), © H. Bradt 2008
(b,d) R. Sunyaev & Y. Zel’dovich in ARAA 18, 537 (1980)
(c) E. L. Wright, pvt. comm.

τ ≡ probability of a scatter while photon in cluster for τ << 1
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