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Outline of this Lesson

Overview of this part of the “Cosmology” course

i. Emission mechanisms

ii. Astrophysical examples

Thermal bremsstrahlung radiation (with a general introduction)

i. Measurable quantities in astrophysics

ii. Thermal bremsstrahlung from a hot plasma of ionized atoms
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Emission Mechanisms

Thermal bremsstrahlung radiation

Blackbody radiation

Synchrotron radiation

Compton scattering

Bremsstrahlung

Synchrotron

Black body

Compton scattering
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Emission Mechanisms
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Astrophysical Examples

Multi-wavelength emission

 from galaxies ...

... and from galaxy clusters
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Discovery of Galaxies & Galaxy 
Clusters

XVIII century: Messier and Herschel note the 
existence of  “nebulae” and concentrations of them 
in the sky 

1901: Wolf produce the first map of visible light 
distribution in a cluster of nebulae (Coma) 

C. Messier

H.D. Curtis H. Shapley

W. Herschel

1920: “Great debate” by Curtis & Shapley   
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... as seen by Messier ... ... and by the Hubble Space Telescope

The Andromeda Galaxy
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E. Hubble

1923: Our Galaxy is not Unique!
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The Mass of Galaxies & Galaxy 
Clusters

F. Zwicky

V. Rubin

30’s & 70’s: unobserved form 
of matter in clusters and 

galaxies...

The Dark Matter problem catch 
the attention of astronomers
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Not only visible light: 
not only Stars and Galaxies...
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Astrophysical Examples

Multi-wavelength emission

 from galaxies ...

... and from galaxy clusters

UV + IR + Radio
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Astrophysical Examples

Multi-wavelength emission

 from galaxies ...

... and from galaxy clusters

Young stars + Dust + Gas
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Astrophysical Examples

Multi-wavelength emission

 from galaxies ...

... and from galaxy clusters

Optical + X-rays + Radio
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Astrophysical Examples

Multi-wavelength emission

 from galaxies ...

... and from galaxy clusters

Galaxies + Hot gas + Cosmic 

rays & magnetic field
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Dark Matter: still an Open Issue...
...and not even the biggest one!

2011: Nobel in Physics goes to

Perlmutter (U.S.), Schimdt (AUS) & Riess (U.S.)
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Outline of this Lesson

Overview of this part of the “Cosmology” course

i. Emission mechanisms

ii. Astrophysical examples

Thermal bremsstrahlung radiation (with a general introduction)

i. Measurable quantities in astrophysics

ii. Thermal bremsstrahlung from a hot plasma of ionized atoms
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General Introduction
Measurable Quantities in Astrophysics

Luminosity : 

Spectral flux density: 
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Angular Resolution
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Very Large Array 
(U.S.)

D

Res / D

�1

FoV / d

�1
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Resolved & Unresolved Sources
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States of matter
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Thermal Bremsstrahlung
Introduction: Hot Plasma

Gas of charged ions and electrons

Quasi-neutral over a large volume

Fourth state of matter

Ionization if gas:

• very hot → collisions between atoms 
sufficiently strong to remove electrons

• very rarefied → electrons hardly 
encounter an ion with which to 
recombine

• subjected to an external source of 
energy → strong electric fields or 
radiation 
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Photo-ionization
Star forming regions

Collisional ionization
Intra-cluster medium
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Thermal Bremsstrahlung - Part I
Collision of an Electron with an Ion

Thermal Bremsstrahlung
How We will Derive the Final Equations

Thermal Bremsstrahlung - Part II
Collision of Thermal Electrons with an Ion

Thermal Bremsstrahlung - Part III
Collision of thermal Electrons with ions
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Part I: an Electron & an Ion
Radiation Basics

Acceleration of the non-relativistic charge → distorted field lines→ distortions 
propagate outward at speed c → propagating electromagnetic wave 

Poynting Vector & Radiation Pattern
(b) a

r
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pattern
 v << c
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at time 
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pulse at position 
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Fig. 5.2: Astrophysics Processes (CUP), © H Bradt 2008

Instantaneous pattern of electric field of a charge 
q moving in a straight line at speed v << c

 Transformation of Electric Vector
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Fig. 7.3: Astrophysics Processes (CUP), © H Bradt 2008
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Part I: an Electron & an Ion
Radiation Basics

Larmor’s formula

• Power (W) radiated by an electron as 
it accelerates 

• It is valid if the radiating electron is 
not relativistic (v << c)

Poynting Vector & Radiation Pattern
(b) a

r
!

Radiation 
pattern
 v << c

an

sin !∝ Etr
ar

E

B

a
!

r
E

B

v = c
Position of 
charge q

Acceleration 
of charge q 
at time 
t" = t – r/c

Electromagnetic 
pulse at position 
r,!  at time t    an = a sin !

v = c
v = ck

(a) 
ri

r
Poynting 
vector !P

!P

q

Fig. 5.2: Astrophysics Processes (CUP), © H Bradt 2008

Volume Elements 

x

y

z !

φ

dA
d"

v dt 

(b) pz

dpp

 
dVmom = p2 d"p dp

p

p2 d"p

d"p

px

py

dV = v dt dA

(a)

Fig. 3.2: Astrophysics Processes (CUP), ©H Bradt 2008

Saturday, October 5, 2013



Part I: an Electron & an Ion
Energy Radiated per Collision

Impact parameter
(a)

b
q = –e

q = +Ze

Acceleration vectors Electric vectors

v = c

Electron

Ion

E(x)

x

(b)

Fig. 5.3: Astrophysics Processes (CUP), © H Bradt 2008

b
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Part I: an Electron & an Ion
Frequency of Emitted RadiationImpact parameter

(a)

b
q = –e

q = +Ze

Acceleration vectors Electric vectors

v = c

Electron

Ion

E(x)

x

(b)

Fig. 5.3: Astrophysics Processes (CUP), © H Bradt 2008
Emitted electric vectors in the same direction as the projected acceleration

Acceleration increases & decreases once → Electric vectors go to a maximum 
and decreases only once → Single pulse of electric vectors
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Part II: Many Electrons & an Ion
Single-Speed Electrons

Impact Annulus

b

db

Area of 
annulus  
2!b  db

Ion

Electron
flux

Fig. 5.4: Astrophysics Processes (CUP), © H Bradt 2008

ne = electron density
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Part II: Many Electrons & an Ion
Single-Speed Electrons

Impact Annulus

b

db

Area of 
annulus  
2!b  db

Ion

Electron
flux

Fig. 5.4: Astrophysics Processes (CUP), © H Bradt 2008

Derived equation independent of frequency/impact parameter: more collisions for 
large b values (bigger annulus), but each emits a lower energy photon compared 
to smaller b

Cutoff frequency: the maximum photon energy is limited by electron velocity 
(hνmax < mv2/2)

The derived classical result is correct (with the addition of a Gaunt factor, see 
below) as long as electrons are non-relativistic (kT << mec2 - T << 6 x 109 K)
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Part II: Many Electrons & an Ion
Many-Speed Electrons
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Part III: Many Electrons & Many Ions
Volume Emissivity

Radiation from a plasma that contains ni ions per unit volume & ne electrons per 
unit volume. They have a Maxwell-Boltzmann distribution of speeds
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Part III: Many Electrons & Many Ions
Volume Emissivity

Radiation from a plasma that contains ni ions per unit volume & ne electrons per 
unit volume. They have a Maxwell-Boltzmann distribution of speeds

Correct result (without our approximations)
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Part III: Many Electrons & Many Ions
Exponential Spectrum

Thermal bremsstrahlung spectrum
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Fig. 5.5: Astrophysics Processes (CUP), © H Bradt 2008

Exponential Spectrum: Three plots
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Fig. 5.6: Astrophysics Processes (CUP), © H Bradt 2008
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Part III: Many Electrons & Many Ions
Integrated Volume emissivity

It can be shown that most of the power from a bremmstrahlung emitting plasma 
arises in the frequency band near the cutoff (@ h ν ~ k T)

Integrated volume emissivity
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Thermal Bremsstrahlung
Final Equations

Volume emissivity of hydrogen plasma:

Specific intensity of hydrogen plasma:

Photon Emission by Plasma

+Ze

Electron
 track

Ion

–e
v

Emitted 
photons

Cloud of 
ionized plasma

Photons

Thickness 
along line of 
sight  (m) Observer

Λ

Fig. 5.1: Astrophysics Processes (CUP), © H Bradt 2008
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Abell 1689HGC 87

Most galaxies are not isolated in the Universe. They are bound together by their mutual 
gravity in structures containing from a few galaxies, to hundreds or even thousands galaxies

Abell 957

M ≤ 1013  MSun M ≈ 1014  MSun M ≥ 1015  MSun

Discovery of galaxy clusters

43

«...remarkable collection of many hundreds of nebulae which are to be seen in what I have 
called the nebulous stratum of Coma Berenices» - W. Herschel (1785)
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Rich clusters are the largest gravitationally bound 

systems in the Universe

They form by merging of units of smaller mass
44
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A very short historical overview 
of optical observations

→ Discovery of 
concentration of 
nebulae (1785)

→ Most of the 
observed nebulae 
are other galaxies
(1925)

→ First statistical 
significative 
sample of clusters
(1958; 1989)

W. Herschel

E. Hubble

G.O. Abell

→ Discovery of an 
unobservable 
matter in clusters
(1933)

F. Zwicky
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46

dominant mass component of 
clusters: dark matter

Equilibrium is maintained by the balance 
between the potential energy associated with 

the mass of the system and the kinetic 

energy of its individual components:

virial equilibrium

2 Ek + Ep = Vir = 0
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The dominant baryonic component of clusters:
hot (107-108 K) intracluster medium (ICM)

Ferrari+ 03, 06a

ICM enrichment
(see Schindler & Diaferio 08 for a review)
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80 % : dark matter

15 % : hot intracluster gas

3 % : galaxies

Galaxy clusters:

➡ complex astrophysical systems

➡ complex evolutionary physics

Image Credits: X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.
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Schindler & collaborators
Innsbruck University
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Exercice

The Orion nebula, an HII region, is 
radiating by thermal bremmstrahlung. 
Consider it to be spherical (radius = 8 
light years), optically thin, and at a 
temperature T = 8000 K. Let Z = 1 , 
g = 1, ne = ni = 6 x 10-8 m-3. 

(a) Find the luminosity (W) of the 
entire nebula in terms of solar 
luminosities.

(b) In what wavelength band or 
bands will the power from the 
Orion nebula be radiated ?  
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