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OUTLINE OF THIS LESSON

? Overview of this part of the “Cosmology” course

I. Emission mechanisms

li. Astrophysical examples

Thermal bremssfrahlung radiation (with a general introduction)

Measurable quantities In astrophysics

Thermal bremsstrahlung from a hot plasma o lonized atoms
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EMISSION MECHANISMS
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EMISSION MECHANISMS
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ASTROPHYSICAL EXAMPLES

Multi-wavelength emission

7 from galaxies ...

7 ... and from galaxy clusters
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DISCOVERY OF GALAXIES & GALAXY
CLUSTERS

XVIII century: Messier and Herschel note the
existence of “nebulae” and concentrations of them
in the sky

1901: Wolf produce the first map of visible light .*_ o ;
distribution in a cluster of nebulae (Coma) || = ® = ..

H.D. Curtls
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THE ANDROMEDA GALAXY

... as seen by Messier ... ... and by the Hubble Space Telescope
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PANDROMEDE
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1923: OUR GALAXY IS NOT UNIQUE!
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THE MASS OF GALAXIES & GALAXY
CLUSTERS

F. Zwicky 30’s & 70’s: unobserved form
| of matter in clusters and
galaxies...

The Dark Matter problem catch
the attention of astronomers

expected
from
luminous disk

- e -

10 R (kpc)

M33 rotation curve
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NOT ONLY VISIBLE LIGHT:

NOT ONLY STARS AND GALAXIES...

0,
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$ 8 s
g o}
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0% 1 T I 1
0.1nm 1nm 10nm 100nm 1 m 10pm 100pm 1mm cm 10cm m 100m 1km
Wavelength
Most of the
Visible Light Infrared spectrum Long-wavelength
Radio Waves observable
Gamma Rays, X-Rays and Ultraviolet observable  absorbed by e absdrad Raclo Waves
Light blocked by the upper atmosphere with - atmospheric :
(best observed from space). SOne gasses (best
atmospheric observed
distortion. from space).
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ASTROPHYSICAL EXAMPLES

Multi-wavelength emission

» from galaxies ...

... and from galaxy clusters
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ASTROPHYSICAL EXAMPLES

Multi-wavelength emission

» from galaxies ...

... and from galaxy clusters
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ASTROPHYSICAL EXAMPLES

Multi-wavelength emission

from galaxies ...

7 ... and from galaxy clusters
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ASTROPHYSICAL EXAMPLES

Multi-wavelength emission

from galaxies ...

7 ... and from galaxy clusters
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DARK MATTER: STILL AN OPEN ISSUE...
...AND NOT EVEN THE BIGGEST ONE!

Cosmic tug of war

The force of dark energy surpasses
that of dark matter as time progresses.

739 DARK ENERGY

A A4S
‘\2"\}'\ ‘ '\‘UQL” ’
v\ ! R4 d R =7 /

Dark Matter
constrains

2011: Nobel in Physics goes to - ~ <

Dark Energy

Perlmutter (U.S.), Schimdt (AUS) & Riess (U.S.)

BIG BANG
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DARK MATTER: STILL AN OPEN ISSUE...
...AND NOT EVEN THE BIGGEST ONE!

2011: Nobel in Physics goes to

Perlmutter (U.S.), Schimdt (AUS) & Riess (U.S.)

Saturday, October 5, 2013



OUTLINE OF THIS LESSON

Overview of this part of the “CGosmology” course

EmMIssion mechanisms

Astrophysical examples

? Thermal bremsstrahlung radiation (with a general introduction)

I. Measurable quantities in astrophysics

ii. Thermal bremsstrahlung from a hot plasma ot lonized atoms
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GENERAL INTRODUCTION
MEASURABLE QUANTITIES IN ASTROPHYSICS

2 Luminosity : L= [yjdV = [ L)dv

L = total or absolute luminosity (W)

L(v) = monochromatic luminosity (W Hz_l)
SV = source volume

j = total power radiated per unit volume (W/m3)

» Spectral flux density: S(v) = L(v)/(4wR?%) = [ [ I(v,T)dQ
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S(v) = spectral flux density (W m— 2 Hz—l) [r: o2

L(v) = monochromatic luminosity (W Hz_l) -y
{
R = source distance
. i : -2 -1 _ -1
I(v, T) = specific intensity (W m Hz ar )

df2? = increment solid angle
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ANGULAR RESOLUTION

SR =

1.22 X wavelength(cm)

diameter of telescope (cm)

IRAS: ~T70 arcsec
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Very Large Array
J S .
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RESOLVED & UNRESOLVED SOURCES

1 GHz 1.6 GHz 2.2 GHz
V/ -—.\'.‘I |./ AT .\\'
/ \ /". N
2.8 GHz 3.4 GCHz 4 GHz
/'_‘\. T 7
I\_ /" [\_/" !\__/'

S(v)=L(v)/(4wR?) = | ff(v, T)d

S(v) = spectral flux density (W m—2 Hz_l)

L(v) = monochromatic luminosity (W Hz_l)
R = source distance

. spe s . —2 -1 _ . —1
I(v, T) = specific intensity (W m Hz ar )

df2 = increment solid angle
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OUTLINE OF THIS LESSON

Overview of this part of the “CGosmology” course

EmMIssion mechanisms

Astrophysical examples

? Thermal bremsstrahlung radiation (with a general introduction)

. Measurable quantities In astrophysics

ii. Thermal bremsstrahlung from a hot plasma of ionized atoms
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STATES OF MATTER
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THERMAL BREMSSTRAHLUNG

INTRODUCTION: HOT PLASMA

? Gas of charged ions and electrons
7 Quasi-neutral over a large volume
? Fourth state of matter

2 lonization if gas:

® very hot — collisions between atoms
sufficiently strong to remove electrons

® very rarefied — electrons hardly
encounter an ion with which to
recombine

® subjected to an external source of
energy — strong electric fields or
radiation
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Collisioi ionization *®."
Infrg@-cluster Medium

Photo-ionization
Star forming regions
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THERMAL BREMSSTRAHLUNG
How WE WILL DERIVE THE FINAL EQUATIONS

THERMAL BREMSSTRAHLUNG - PART |
COLLISION OF AN ELECTRON WITH AN ION

THERMAL BREMSSTRAHLUNG - PART Il
COLLISION OF THERMAL ELECTRONS WITH AN ION

THERMAL BREMSSTRAHLUNG - PART Il
COLLISION OF THERMAL ELECTRONS WITH IONS
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PART I: AN ELECTRON & AN ION

RADIATION BASICS

Instantaneous pattern of electric field of a charge

Poynting Vector & Radiation Pattern

(a) v=cC (b)
Position of Poyntinag. \V
charge g vector 7 R F

N\

Acceleration  Electromagnetic ——
of charge ¢ pulse at position Ratcthatlon
' I t time ¢ pattern
ad.=asin 0 at time r,0 a
n t'=t—rlc v<<cC

g moving in a straight line at speed v << ¢

Fig. 5.2: Astrophysics Processes (CUP), © H Bradt 2008

Acceleration of the non-relativistic charge — distorted field lines— distortions

propagate outward at speed ¢ — propagating electromagnetic wave

E(r,t) — Etrrﬁ _ qa(t’)si’neﬁ

Admegc?r

E(r,t) = Transverse electric vector; V/m; v << ¢
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e0E? /2 = energy density of electric field
B? /219 = energy density of magnetic field
B=F/c

¢? = 1/po€o

po = 47 X 10" TmA—1l = permeability of free space
€np = 8.854 X 10—12 g4 A2 ,,—3 kg_l = permittivity of the vacuum




PART |I: AN ELECTRON & AN ION
RADIATION BASICS

Fp = Poynting vector; W/m2
= direction & magnitude of the e.m. wave energy flow

Radiation
pattern
V<L C

e0E? /2 = energy density of electric field
B? /20 = energy density of magnetic field
B=FE/c

¢? = 1/po€o

po = 4w X 107 TmA—1l = permeability of free space
€np = 8.854 X 10— 12 ¢4 72 ,,—3 kg_l = permittivity of the vacuum

E(I‘,t) — B, f = qa(t')sineﬁ

Admeqgc?r

E(r,t) = Transverse electric vector; V/m; v << ¢
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PART I: AN ELECTRON & AN ION
RADIATION BASICS

_ ExB
Fp = "

Fp = Poynting vector; \.’V/m2
= direction & magnitude of the e.m. wave energy flow

_ g%sin?0a?(t)

fP(’raoat) — (4m)2epcir2

.Fp(r, @,t) = magnitude of Poynting vector in vacuum v << ¢; \V/m2

[for an observer at distance r and angle 6 from acceleration direction]
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Radiation
pattern
V<L C




PART I: AN ELECTRON & AN ION

RADIATION BASICS

Fp = Poynting vector; \.’V/m2
= direction & magnitude of the e.m. wave energy flow

]:- (T 0 t) g%sin?0a?(t')

(47)2€epcdr?

Fp(r,08,t) = magnitude of Poynting vector in vacuum v << ¢; \rV/m2

[for an observer at distance r and angle 6 from acceleration direction]

P(t) = f;;of "o Fp(r,0,t) r* sinf d¢ d

= Plt) = ey T

c3
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Radiation
pattern
V<L C

Larmor’s formula

e Power (W) radiated by an electron as
it accelerates

e |t is valid if the radiating electron is
not relativistic (v << ¢)



PART I: AN ELECTRON & AN ION
ENERGY RADIATED PER COLLISION

Impact parameter b

Electron Acceleration vectors E(x) Electric vectors
| Wi~ LY %
b j % N
— - — — — - @® Ion v=e
q = +Ze X

Fig. 5.3: Astrophysics Processes (CUP), © H Bradt 2008

2 ~
a=E=—;L 258 (m/s)

a = acceleration experienced by an electron of charge —e and mass m at a distance r from an ion of charge Ze

~ 1 Ze* - .
Amax ® froo boon (maximum acceleration of the electron)

T, =~ b/v  (collision time)
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PART |I: AN ELECTRON & AN ION
ENERGY RADIATED PER COLLISION

~ 1 Ze?
Omax ~ dmeg b2m
Electron Acceleration vectors
o
—_ — *
Ty = b/v 1= bL LL(\A
. - _ @® Ion
£)2 q =+Ze
P(t) T 67r€0 : acg)
400 +OO
Q(b,v) = [~ P(t)dt = 45— 03 " a(t)?dt

(total energy emitted by the electron during the transit)

2
— Q(ba 'U) ~ 67360 Z_Ba'?narz:Tb

— Q(b,v) ~ L2222 (J/collision)

(4mep)3 3 c3m2b3v
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PART |I: AN ELECTRON & AN ION
FREQUENCY OF EMITTED RADIATION

Electron Acceleration vectors Electric vectors

E(x)
o~ W P
blqgn\A lm»x

7 Emitted electric vectors in the same direction as the projected acceleration

7 Acceleration increases & decreases once — Electric vectors go to a maximum
and decreases only once — Single pulse of electric vectors

—w=2rv 1/, =v/b
— v =w/27m = v/2wb
— b=~ v/2nv

— db~ —v dv/271?
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PART |II: MANY ELECTRONS & AN |ION
SINGLE-SPEED ELECTRONS

) 2 .6 .. I Annul
Q(b,v) ~ (4Wi0)3 2255 (J/collision) mpact Annuius

n. = electron density

Electron
flux

buv/2nv

Area of Ton

annulus
2mb db

I Ji |
eigiati
=

. 2
db =~ —v dv/27v
Fig. 5.4: Astrophysics Processes (CUP), © H Bradt 2008

Py(b,v) = Q(b,v) ne v 2mb db (W /ion in db at b)

Pp(b, v) = power coming from an ion and a flux of electrons of density n,

b | . e
Jo. Po(b,v) db = — f:lz P,(v,v) dv| | — P, (v,v) dv =~ ( . 8;’2 ne-2-¢du

dmen)3 > e3m2v

db Py (v, v) = power per unit-fr / interval (W /ion in dv at
My — 21 v (v, v) = power per unit-frequency interval (W /ion in dr at v)
— Py (v,v) = =Py(b,v) 5,
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PART |II: MANY ELECTRONS & AN |ION
SINGLE-SPEED ELECTRONS

Impact Annulus

db
— B ¥
__> ________
__> ___T___
P oy 1 ~ 1 87(2 N yA 266 1 Electron __}l b
v(v,v) dv = (dme0)® 3 e 3mzy AV flux —5 o
_?
Pur(v.v) = power per unit-frequency interval (W /ion in dv at v) — > Area of on
. : annulus
2wb db

Fig. 5.4: Astrophysics Processes (CUP), © H Bradt 2008

2 Derived equation independent of frequency/impact parameter: more collisions for
large b values (bigger annulus), but each emits a lower energy photon compared
to smaller b

? Cutoff frequency: the maximum photon energy is limited by electron velocity
(thax < mV2/2)

2 The derived classical result is correct (with the addition of a Gaunt factor, see
below) as long as electrons are non-relativistic (KT << mec? - T << 6 X 10° K)
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PART |lI: MANY ELECTRONS & AN ION
MANY-SPEED ELECTRONS

L 7..72
P(v) = (52%5) 32 ¢ (_ 5 ) (Maxwell-Boltzmann distribution)

P(v) = probability of finding a particle with vector velocity v per unit 3-D velocity space

| 2
P(v)dv = P(v) 4mv* dv
P(v) = probability of an electron’s having speed v in dv

47\'1'2 dv = volume of a shell in velocity space at speed v

(Pu())s0, = [ Pu(v,v)P(v) dmv?*dv (W ion~! Hz™!)

T

= Power emitted at » from an ion in a sea of electrons with a Maxwellian-Boltzmann distribution of speed

Vinin, = (2h1//m)1/2

= Minumum velocity an electron can have for emitting an hr energy photon
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PART llII: MANY ELECTRONS & MANY IONS
VOLUME EMISSIVITY

Radiation from a plasma that contains n; ions per unit volume & ne electrons per
unit volume. They have a Maxwell-Boltzmann distribution of speeds

Jo (W)Y = 0y (Py(1)),, 0

Ju () = Power emitted per unit volume per hertz (W m 3 Hz_l)

(P,(v)),. = [ P,(v,v)P(v) drvidv

) .
U LT

o 1 872 = 728
P,(v,v) dv = (drc)® 3 Me S-5-dv

2

P(v) :( m )?/26(_%)

2wkT

Vmin = (2hv/m)1/?

. ‘”13

) _— 1 32 (1 _n° Z2e® . —hv/kT —1/2 _
'/ll(l/)dl/  (4meg)? 3 (b k ) e Ielli€ ' 1 dv
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PART llII: MANY ELECTRONS & MANY IONS
VOLUME EMISSIVITY

Radiation from a plasma that contains n; ions per unit volume & ne electrons per
unit volume. They have a Maxwell-Boltzmann distribution of speeds

. 1/2 . .
: 1 32 ({1 #3 Z2eb —hv/kT —1/2
.7’/(1/)(11/ - (471'6())3 3 (g k 7713) c3 Nell; € “// T / dl/

Correct result (without our approximations)

/2

1/2 _, .
' . 1 32 (2 m Z%e® . —hv/kT p—1/2
']U(I/)dl/ . g(l/’ T’ Z) (4meg ) 3 (§ k m- ) -3 Nelli€ ' 1 < dv

g, T,2) =~ 1

g (W)dv = Cy g, T, Z) Z? nen; e~ hv/kT =1/2 q,,
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PART IlI: MANY ELECTRONS & MANY IONS

EXPONENTIAL SPECTRUM

g, T,72)~ 1

Ju(v)dv = Cy gv, T, Z) 72 n.n; e—hv /KT =1/2 1,

Thermal bremsstrahlung spectrum

T
E | Pure Gaunt factor 1
% Exponential effect
E o a4 _
g I -
o T=5x10'K
bo —
3 46 ni= e = 106 m 3 |

- 1 | | I | ]

10 12 14 16 3
Log v (Hz)

Fig. 5.5: Astrophysics Processes (CUP), © H Bradt 2008

Saturday, October 5, 2013

Exponential Spectrum: Three plots

(a) Linear-linear plot T (b) Semi-log plot
1
s
i gg C T, D
E —_—
= v (Hz)
z
g T, (c) Log-log plot
| \\
= | — T
'\
° D
v (Hz) log v (Hz)

Fig. 5.6: Astrophysics Processes (CUP), © H Bradt 2008



PART llII: MANY ELECTRONS & MANY IONS
INTEGRATED VOLUME EMISSIVITY

g, T,Z)~ 1

Jo(W)dv = Cy g, T, Z) Z? nen; e~ hv/kKT —=1/2 qy

It can be shown that most of the power from a bremmstrahlung emitting plasma
arises in the frequency band near the cutoff @ h v ~ k T)

Integrated volume emissivity

J(1') = . wv)dv =C0Cy g(1,72) Z ’ Nen; T1/2 W /m?
(

J0

with

Cy =144 x 1074 W m? K~1/2
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THERMAL BREMSSTRAHLUNG
FINAL EQUATIONS

Volume emissivity of hydrogen plasma:

5,1, T) x g(v, T)ngT—l/ze—h”/kT W m~2 Hz !

Photon Emission by Plasma

Cloud of
ionized plasma

A - . Photons
y 1/ "- l/q T ' ] & r l/. T .
I(v,T) = / ot B T) g a1 o 2\%2% e
JO 477' 47T Electron < % /\/\/\V

@ +Z¢
Ton

Thickness

along line of —((
sight (m) Observer

Specific intensity of hydrogen plasma:

Fig. 5.1: Astrophysics Processes (CUP), © H Bradt 2008

I(wv,T) x g(v, T)Yn*T /2= "/*TA W m=2 Hz lsr!
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DISCOVERY OF GALAXY CLUSTERS

bellf1 6 - ¢ oS
Ab/e .' .6@ ' ; "
L ‘. ." -o ol .’ . X

"M <102 Mo, &

Most galaxies are not isolated in the Universe. They are bound together by their mutual
gravity in structures containing from a few galaxies, to hundreds or even thousands galaxies

«...remarkable collection of many hundreds of nebulae which are to be seen in what | have
called the nebulous stratum of Coma Berenices» - W. Herschel (1785)

43
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&

 Rich clusters are the largest gravitationally bound

-

systems in the Universe

- . s - s
.

» ’

: /I' .'\

A
; .\ % . . : . _, ' . /

" % They form by merging of units of smaller mass

o ) ) il . " - e . l 44
. N . . - ¢ » .- 3 3 y .
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A VERY SHORT HISTORICAL OVERVIEW
OF OPTICAL OBSERVATIONS

— Discovery of — First statistical
concentration of 0 e significative
nebulae (1785) NG | sample of clusters

o J-| (1958;1989)

._, Igﬂ‘:
“ B G.O. Abell
W. ‘]—[érscﬁeﬂ
— Most of the e , — Discovery of an
. observed nebulae k;; > unobservable

are other galaxies g / ! matter in clusters
(1925) ; . —— (1933
F. Hubble

| F. Zwicﬁz_ 45
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DOMINANT MASS COMPONENT OF
CLUSTERS: DARK MATTER

Equilibrium is maintained by the balance
between the potential energy associated with
the mass of the system and the kinetic
energy of its individual components:

virial equilibrium

2Ec+Ep,=Vir=0

Saturday, October 5, 2013



The dominant baryonic component of clusters:
hot (107-10° K) intracluster medium (ICM)

1/26—hu/kT

€y, X T~ NeNyz €rg cm 3s1Hz !

KeViem® skeV
o0 TR

5 ICM enrichment :
- (see Schindler & Diaferio 08 for a review)

Channel Energy (keV)

Ferrari+ 03, 06a

47
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: . 80% :'dérk.matter .'-’ N
o 15%.hotmtraclusterdas e

pe o .8 ;‘3%.galax1es. a8
and & - . . ~ YRR -. al ‘ ‘.
' , . ':' o

. -. .'.. ..’

¢ ’ ..' | ‘
» o * S ‘_ ‘ e R A T ‘ . y - . . y
L RN S Gala.xyclusters. e | R )

.- complex astrophys:cal systéms
r ’ s complex evolutlonary phys:cs

- L\, s " " ."' ' Pl ‘ » ¥ &, :
* Irﬁa‘e Credits: X-ray: NASA/CXC/CfA/M .Markevitch et al O[tlcal N ASA/STScI Magellan/gA_rizona/D.Clowe et al.
- - S O >
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. The HYDRO-SKI Team
e A
Schindler & collaborators
Innsbruck University 49
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EXERCICE

The Orion nebula, an HIl region, is
radiating by thermal bremmstrahlung.
Consider it to be spherical (radius = 8 : ~ NICMOS
light years), optically thin, and at a ' "
temperature T = 8000 K. LetZ =1,
g=1,nNne=n=6x10%m=,

(@) Find the luminosity (W) of the
entire nebula in terms of solar

luminosities.
b) | h | h band U — -
(b) In what wavelength band or Orion Nebula  OMC-1 Region ubble Soace Tel
; PRCA7-13 « ST Sc! OPO « May 12, 1997 ubbie space elescope
bandS WI” the pOwel’ from the R. Thompson (Univ. Arizona), S. Stolowy (Univ. Arizona), C.R. O'Dell {Rice Univ.) and NASA

Orion nebula be radiated ?
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