METEORITES, ISOTOPIC DATATION

MÉTÉORITES

MÉTÉORITES : CLASSIFICATION

COMPOSITION of CHONDRITES

- <u>Chondrules (fr: chondres)</u> Silicate/metal beads. Varying sizes (10 μm- few mm).
- Refractory inclusions = CAI (Calcium-Aluminum rich Inclusions)

Contain Ca- and Al-rich minerals. Varying sizes (10 μm- few cm)

☆ <u>Matrix (fr: matrice)</u> Silicates, oxides, amorphous. Fine-grained (< µm).</p>

CHONDRULES : Proportion and Size

Ex: PORPHYRITIC CHONDRULE

☆ Olivine [(Mg,Fe)₂SiO₄] and pyroxene [(Mg,Fe)SiO₃] <u>phenocrysts</u> set in a glassy matrix

MATRIX of the CHONDRITES

Good agreement between asteroids of spectral type C and Carbonaceous Chondrites.

Possible agreement between astéroides of type A and stony-iron meteorites.

Iron has a smooth spectrum, inclined towards the red. Quite similar to asteroids of type M.

Radar measurements of M-type asteroids provide a strong link to iron meteorite compositions.

Spectral match between Vesta and achondrite meteorites (HEDs) first found by McCord et al. (1970).

VESTA

Impact basin of 460 km diametre

Images HST Reconstruction topographique

Thomas, Binzel et al. (1997)

ASTÉROIDES

ASTÉROIDES

<u>Repartition of taxonomic types :</u>

From Gradie and Tedesco (1982)

MARTIAN METEORITES

Shergottite, Nakhlite, Chassignite (SNC) Meteorites:

ABUNDANCES

The abundance of an element El in the photosphere of the Sun is measured via emission lines.

 \Rightarrow In the solar spectroscopic community:

A(EI) = log[n(EI)/n(H)] + 12

- rightarrow In this scale, A(H) = 12.
- Meteorites abundances are measured in the laboratory [more precise]
- ☆ Meteorites abundances are rescaled so that

 $A(Si)_{meteorites} = A(Si)_{photosphere}$

ABNUDANCES

CONDENSATION SEQUENCE

Davis and Richter, TOG 2003

Age of Chondrites

RADIOACTIVE DECLINE

- ☆ Radioactivity discovered by Becquerel in 1896
- ☆ Radioactivity α: ^A_ZP → ^{A-4}_{Z-2}F + ⁴He
- ☆ Radioactivity β^{-} : ${}^{A}_{Z}P \rightarrow {}^{A}_{Z^{+1}}F + e^{-} + \nu_{e}$
- ☆ Radioactivity β⁺: ^A_ZP → ^A_{Z-1}F + e⁺ + ν_e \bar{x}

$$(n -> p + e^{-} + v_{e})$$

 $(n -> p + e^{-} + v_{e})$

N(t) = N(0) x exp($-\lambda t$) or: N(t) = N(0) x (1/2)^{- t/T}

☆ Radioactive decay characterized by:

rightarrow The decay constant (λ)

 $rac{1}{2}$ The half-life (T_{1/2})

AGES and ISOTOPIC COSMOCHEMISTRY

- One of the most important successes of isotopic cosmochemistry is the ability to date rocks, events...
- ☆ Radioactive chronometers are used to date events and processes
- ☆ chronometers
 - \Rightarrow Long-lived chronometers are still alive (T_{1/2} > 200 Ma)
 - ☆ Short-lived chronometers are extinct (Al-Mg; Hf-W;...)
- ☆ Main long-lived chronometers are
 - \Rightarrow ²³⁸U decaying into ²⁰⁶Pb (T_{1/2} = 4.5 x 10⁹ yr) fission
 - ightarrow ²³⁵U decaying into ²⁰⁷Pb (T_{1/2} = 7.03 x 10⁸ yr) fission
 - ☆ ⁸⁷Rb decaying into ⁸⁷Sr (T_{1/2} = 4.8 × 10¹⁰ yr) β⁻

PRINCIPLES of DATATION

If F_0 is known, and S=0 at t=0, one just needs to measure F or S to deduce t. But in general, neither F_0 nor S(t=0) are known...

ABSOLUTE DATATION: long period isotopes

The system Pb-Pb :

$$^{206}Pb = ^{206}Pb_{0} + ^{238}U(e^{\lambda_{238t}} - 1)$$

avec $\lambda_{238} = 1,55125 \ 10^{-10} \ an^{-1}$ (demi-vie = 4,47 Ga)

$$207Pb=207Pb_0+235U(e^{\lambda_{235}}-1)$$

avec $\lambda_{235} = 9,8485 \ 10^{-10} \text{ an}^{-1}$ (demi-vie = 0,704 Ga)

$$\frac{206Pb}{204Pb} = \frac{206Pb_0}{204Pb} + \frac{238U}{204Pb}(e^{\lambda_{238t}}-1)$$
$$\frac{207Pb}{204Pb} = \frac{207Pb_0}{204Pb} + \frac{235U}{204Pb}(e^{\lambda_{235t}}-1)$$

ABSOLUTE DATATION: long period isotopes

<u>The system Pb-Pb :</u>

 $(\underline{Hyp}: {}^{238}U/{}^{235}U = C^{te} = 137,88)$

or: $(y-y_0)/(x-x_0) = a(t)$

Equation defining a straight line of slope depending on time : the slope gives the age ! This straight line is an **isochrone**.

For an isochrone, at least 2 points are needed, from 2 minerals of a same object, having different initial U/Pb.

ABSOLUTE DATATION: long period isotopes

The system Pb-Pb :

Consider the formation of an asteroid. N kinds of minerals are created, with various μ =U/Pb (chemistry). Then, the system doesn't evolve chemically anymore, but U \rightarrow Pb inside the minerals.

In the Pb-Pb diagramm, the N points are aligned on a line of slope *a* (age of the asteroid).

ABSOLUTE DATATION: CAI & CHONDRULES

The oldest dated CAI has 4567.17 ± 0.70 Ma
Compatible with 4566 ± 2 Ma (Manhès et al. 1988)

☆ Does that dates the origin of Solar System?

Amelin et al., Science 2002

RELATIVE DATATION: short period isotopes

If extinct radioactivity, F=0, $S=S_0+F_0$.

Ex: The system Hf-W ($t_{1/2}$ ~ 9 Myr) :

Hafnium 182 decomposes into Tungsten 182.

The higher the rate ¹⁸²Hf/¹⁸⁰Hf was, the more the proportion of ¹⁸²W inside the tungsten increases with the general Hf/W ratio.

RELATIVE DATATION: short period isotopes

<u>The system AI-Mg</u> ($t_{1/2}$ ~0.71 Ma) : extinct radioactivity.

$$\begin{pmatrix} \frac{2^{6}}{2^{4}} \frac{Mg}{Mg} \end{pmatrix} = \begin{pmatrix} \frac{2^{6}}{2^{4}} \frac{Mg}{Mg} \end{pmatrix}_{t=t_{f}} + \begin{pmatrix} \frac{2^{6}}{2^{4}} \frac{Al}{Mg} \end{pmatrix}_{t=t_{f}} \qquad (t_{f} = \text{formation time})$$

$$\begin{pmatrix} \frac{2^{6}}{2^{4}} \frac{Al}{Mg} \end{pmatrix}_{t=t_{f}} = \begin{pmatrix} \frac{2^{6}}{2^{7}} \frac{Al}{2^{7}} \frac{Al}{2^{4}} \frac{Al}{Mg} \end{pmatrix} \qquad \begin{pmatrix} \frac{2^{7}}{2^{7}} \frac{Al}{2^{4}} \frac{Al}{2^{4}}$$

If one measures *x* and *y* of several minerals of a same object, the points align on a straight line of slope *a* : an **isochrone**.

Same slope $a \iff$ same age t_f (under the assumption that $({}^{26}AI/{}^{27}AI)_{t0}$ is the same in all the Solar System). **EXO**

RELATIVE DATATION: short period iso<topes

Melilite Anorthite Spinel Pyroxene

600 µm 🤇

CAI MRS6 (Leoville, CV3) Crystallized 4.567 Ga (BSE image)

Me

²⁶Al inside CHONDRULES

Maximum for $a = ({}^{26}\text{AI}/{}^{27}\text{AI})_{t0} e^{-\lambda(t-t0)}$ inside chondrules : ~10⁻⁵. Inside CAI : ~ 4,5 x 10⁻⁵.

²⁶Al inside CHONDRULES

Maximum for $a = ({}^{26}AI/{}^{27}AI)_{t0} e^{-\lambda(t-t0)}$ inside chondrules : ~10⁻⁵.

Inside CAI : ~ 4,5 x 10⁻⁵.

Thus
$$\exp(-\lambda(t_{CAI}-t_0)) / \exp(-\lambda(t_{chondres}-t_0)) = 4,5$$

so
$$exp(-\lambda t_{CAI}) = 4,5*exp(-\lambda t_{chondres})$$

so $t_{CAI} = t_{chondres} - \ln(4,5)/\lambda$

Conclusion: chondrules formed 2 Myrs after the CAIs.

We set
$$t_{CAI} = t_0 = 0$$
, birth of the Solar System.

Fundamental assumptions :

- The isotopic distribution of the chemical elements was the same at t=0 everywhere in the Solar System.
- Chemical fractionation doesn't induce any isotopic fractionation.

<u>Attention :</u>

- The ages obtained are "closure ages" (i.e. the time for which the system hasn't exchanged elements with the outer world).
- In fact, datation is made from isochrones (so from the analysis of several chemical components of the sample), thus one date the age of *chemical fractionation* of the system.

<u>The system Hf-W</u> ($t_{1/2}$ ~ 9 Ma) :

Hafnium 182 declines into Tungstène 182.

Similarly as for the AI-Mg, system, one finds :

But Hafnium is <u>lithophile</u> (goes into the mantle) while the Tungsten is <u>siderophile</u> (goes into the core) : <u>chemical fractionation</u>.

One date the closure of the system "mantle" or "core", that is the *differenciation* of a planet !

<u>The system Hf-W</u> ($t_{1/2}$ ~ 9 Ma) :

Late differenciation: all the ¹⁸²Hf has declined, all the W in the core.

Fast différentiation : ¹⁸²Hf in the mantle, produces there some ¹⁸²W.

<u>Age of the Moon, through ¹⁸²Hf / ¹⁸²W chronometer :</u>

 $^{\rm 182}{\rm Hf} \rightarrow {}^{\rm 182}{\rm W}$, half life τ = 9.10 $^{\rm 6}$ years.

Late core formation : no excess ¹⁸²W in the mantle.

Excess ¹⁸²W in lunar rocks \rightarrow Moon solidified within 60 Myrs (Kleine et al. 2005, Lee et al. 1997, 2002)

Analyse of 3 kinds of lunar rocks (Kleine et al, 2007, Science):

	KREEP	Low W basalt	High W basalt
$\epsilon^{182}W$:	0,06 +/- 0,20	1,18 +/- 0,20	2,14 +/- 0,57
¹⁸⁰ Hf/ ¹⁸⁴ W:	10 +/- 10	26,5 +/- 6,5	> 45

EXERCICE: Deduce the age of solidification of the Moon. One gives $(^{182}W/^{184}W)_{ref}=1$, $(^{182}Hf/^{180}Hf)_{CAI}=10^{-4}$.

Unluckily, ¹⁸²W is also coming from ¹⁸¹Ta capturing a neutron (cosmic rays).

Touboul et al. (2007, Nature) : "The dominant ¹⁸²W component in most lunar rocks reflects cosmogenic production"

New data from unpolluted samples :

"lunar and terrestrial mantles have identical ¹⁸²W/¹⁸⁴W. This [...] constrains the age of the Moon and Earth to 62 Myrs (+90/-10)".

Touboul et al. (2008) :

- Same result for plagioclase separates from two ferroan anorthosites (i.e. crust).

- Measure of basalts cosmogenic pollution.

The Moon formed by a giant impact on the proto-Earth of a proto-planet of the size of Mars.

Do we date the differenciation of the proto-Earth ? That of the impactor ? The collision ?

It depends...

If reequilibration, the anomaly in ¹⁸²W is reduced (or reset) by the impact.

Total reequilibration -> one dates the impact.

No reequilibration : we get the average $\epsilon^{\rm 182}W$.

Oservations of terrestrial planets and asteroids suggest that there has been many giant impacts after 10 Ma, with requilibration (Nimmo & Agnor 2006).

Isotopic equilibration just after the impact, between a magma ocean Earth, and a molten disc, via an atmosphere of silicates

Disc during 100 to 1000 years, at 2500 K, 10 to 100 Bar.

Typical echange time between vapour and liquid : week. Convection in the ocean : week. In the disc or the gas : day.

Problem : radial mixing.

It needs more than 30 years to diffuse material to 4 terrestrial radii.

Problem : radial mixing.

It needs more than 30 years to diffuse material to 4 terrestrial radii.

Salmon & Canup (2012) : Moon accretion stalls for ~100 years because the growing Moon repels the disc, and prevents its spreading.

Conclusion :

The Moon formed after a giant impact on Earth.

This impact caused an Earth-Moon isotopic equilibration.

As the mantles of the Earth and the Moon still have the same ¹⁸²W/¹⁸⁴W, ¹⁸²Hf was extinct at that time : the impact took place (at least) 60 Myrs after the CAI.

New result:

Jacobson, Morbidelli, et al, DPS meeting, oct. 2013, Denver

The amount of « late veneer » that the Moon accreted after it formed is correlated with the time of the last giant impact. For reasonable estimates of the late veneer, the impact must be late (~95+/-30 Myrs).