The structure and evolution of
stars

Lecture 5: The equations of
stellar structure

Karl Schwarschild (1873-1916)



Introduction and recap

For our stars — which are isolated, static, and spherically symmetric —
there are four basic equations to describe structure. All physical
quantities depend on the distance from the centre of the star alone

1) Equation of hydrostatic equilibrium: at each radius, forces due to
pressure differences balance gravity

2) Conservation of mass

3) Conservation of energy : at each radius, the change in the energy
flux = local rate of energy release

4) Equation of energy transport : relation between the energy flux and
the local gradient of temperature

We will derive the 4" of these equations and explore how to solve
the equations of stellar structure to construct models.



Learning Outcomes

The student will learn:
« How to derive the 4" equation to describe stellar structure
» Explore ways to solve these equations.

« How to go about constructing models of stellar evolution — how the models
can be made to be time variable. You will gain an understanding of what time
dependent processes are the most important

* How to come up with the boundary conditions required for the solution of the
equations.

* How to consider the effects and influence of convection in stars, when and
where it is important, and how it can be included into the structure equations.



Theoretical stellar evolution
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With Richard Monier, you will discuss the
results of modern stellar evolutionary
computations.

The outcome will be this type of theoretical
HR-diagram.

At present we are deriving the fundamental
physics underlying the calculations - the
end point is a diagram like this.



The characteristic timescales

There are 3 characteristic timescales that aid concepts in stellar evolution
The dynamical timescale 1

Derived in Lecture 2: P ( 2r° )2
For the Sun t,~2000s GM

The thermal timescale

Derived in Lecture 4: time for a star to emit its entire reserve of thermal energy
upon contraction provided it maintains constant luminosity (Kelvin-Helmholtz
timescale) GM?

For the Sun t,~30 Myrs Ly ~ P

The nuclear timescale

Time for star to consume all its available nuclear energy (e = typical nucleon
binding energy/nucleon rest mass energy eMc?

For Sun t, . is larger than age of Universe Fuc I

:>td << tm <<t

nuc



The equation of radiative transport

We assume for the moment that the condition for convection is not satisfied, and
we will derive an expression relating the change in temperature with radius in a
star assuming all energy is transported by radiation. Hence we ignore the effects
of convection and conduction.

We will make use of your knowledge of Marianne Faurobert, which covered stellar
atmospheres and radiative transport.

Recall the equation of radiative transport in a plane parallel geometry i.e. the gas
conditions are a function of only one coordinate, in this case r

cosO=u
0
r 7/ dx=£
or dal, di,
| i dr

dl '
= U d; =K,p(, +’J(—”)



The equation of radiative transport

See handout for derivation of equation:

dl  3pk,
dr 64mr’oT’

L(7)



Solving the equations of stellar structure

Hence we now have four differential equations, which govern the structure of
stars (note — in the absence of convection).

aM(r) _ 472 (r) Where
r r = radius
dP(r) _ GM(r)p(r) P = pressure at r
dr r? M = mass of material within r
JL p =density at r
() _ 47r p(r)e(r) L =luminosity at r (rate of energy flow across
! sphere of radius r)
dT(r) _ 3p(r)K,(r) L) T =temperature at r

Kr = Rosseland mean opacity at r
¢ = energy release per unit mass per unit time

dr 64mr’oT(r)’

We will consider the quantities:

P =P (p, T, chemical composition)  The equation of state

Kr = Kr(p, T, chemical composition)

e =¢ (p, T, chemical composition) 8



Boundary conditions

Two of the boundary conditions are fairly obvious, at the centre of the star
M=0, L=0 at r=0

At the surface of the star its not so clear, but we use approximations to allow
solution. There is no sharp edge to the star, but for the the Sun

p(surface)~10-" g cm=3. Much smaller than mean density p(mean)~1.4 g cm-3

(which we derived). We know the surface temperature (7,~5780K) is much smaller
than its minimum mean temperature (2x10° K).

Thus we make two approximations for the surface boundary conditions:
p=T=0 atr=r,
l.e. that the star does have a sharp boundary with the surrounding vacuum



Use of mass as the independent variable

The above formulae would (in principle) allow theoretical models of stars with a
given radius. However from a theoretical point of view it is the mass of the star
which is chosen, the stellar structure equations solved, then the radius (and other
parameters) are determined. We observe stellar radii to change by orders of
magnitude during stellar evolution, whereas mass appears to remain constant.
Hence it is much more useful to rewrite the equations in terms of M rather than r.

If we divide the other three equations by the equation of mass conservation, and
invert the latter:

dr 1 dL
= —_ — 8
dM  4mr’p dM With boundary conditions:

M~ dmt g T eanirtaert PO, T=0at M=M,

We specify M, and the chemical composition and now have a well defined set
of relations to solve. It is possible to do this analytically if simplifying

assumptions are made, but in general these need to be solved numerically on
a computer. 10



Stellar evolution

We have a set of equations that will allow the complete structure of a star to be

determined, given a specified mass and chemical composition. However what
do these equations not provide us with ?

In deriving the equation for hydrostatic support, we have seen that provided
the evolution of star is occurring slowly compared to the dynamical time, we
can ignore temporal changes (e.g. pulsations)

[, =

7,3 % And for the Sun for example, this is {;~2000s, hence this
r is certainly true
GM

And we have also made the assumption that time dependence can be
omitted from the equation of energy generation, if the nuclear timescale

(the time for which nuclear reactions can supply the stars energy) is
greatly in excess of ¢,

11



Stellar evolution

If there are no bulk motions in the interior of the star, then any changes of
chemical composition are localised in the element of material in which the
nuclear reactions occurred. So star would have a chemical composition
which is a function of mass M.

In the case of no bulk motions — the set of equations we derived must
be supplemented by equations describing the rate of change of
abundances of the different chemical elements. Let C ,, be the
chemical composition of stellar material in terms of mass fractions of
hydrogen (X), helium, (Y) and metals (Z) [e.g. for solar system
X=0.7,Y=0.28,7=0.02]

o(

CXO;I;Z)M =f(p,T9CX,Y,Z)

Now lets consider how we could evolve a model

ICyxyz)u
ot

(CX,Y,Z )M,to w0t (CX,Y,Z )M,to +
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Convection

When the radial flux of energy is carried by radiation, we
derived an expression for the temperature gradient:

ar ~ 3 kp L

dr dac T 4nr’
Large luminosity and / or a large opacity k¥ implies a large
(negative) value of dT / dr.

For an ideal gas, the energy density (energy per unit volume)
IS given by: 3 - ...with n the number density of particles.
—nNn

Hot gas near the center of the star has higher energy density
than cooler gas above - if we could "swap’ the gas over we
could transport energy outward... especially if dT /dris
large.



Schwarzschild criteria for convective instability

1

1

N\
1
1
i

Imagine displacing a small mass
element vertically upward by a
distance dr. Assume that no heat
is exchanged with the surrounding,
l.e. the process is adiabatic:

* Element expands to stay in
pressure balance with the
new environment

* New density will not generally
equal the ambient density
at the new location

If this mechanical energy transport is more efficient than the
radiative case, the medium will be convectively unstable



Stability condition is:

Temperature gradient
when an element is

Temperature gradient dT)
star moved adiabatically

in the star ;

dT)
< —
K dr adiabatic

The important physical point is:

Too steep a temperature gradient leads to the
onset of convection in stars

Since a steep gradient is caused by a large luminosity, can
convert this into an expression for the maximum luminosity
that can be transported radiatively:

1 1 omitting lots of factors but
L o —[1-= keeping the important dependencies
. K y on opacity and adiabatic exponent

Larger luminosities lead to convection.



Which stars are convectively unstable?

Low mass stars

) Near the surface, opacity is large (atomic
L & —(1— —) processes) and y <5/ 3 due to ionization.

K >
4 Leads to surface convection zones.

High mass stars

Luminosity of stars increases very rapidly with increasing
stellar mass: L ~ M# for stars of around a Solar mass.

All this energy is generated very close to the core of the
star. Can exceed the critical value - core convection.

Pre-main-sequence stars

Fully convective due to the large dissipation of gravitational
potential energy as they contract.



Regions of convection in main sequence stars
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Differences in Stellar Structures

high-mass star

‘IMSLn star

very low mass star




Thus IN A CONVECTIVE REGION we must solve the four differential equations,
together with equations for ¢ and P

dr 1 dL
dM  4mrip aMm

&

P GM  PdT _y-1

M~ 4wt TdP vy

The eqgn for luminosity due to radiative transport is still true:
_ 64x’r*acT’ dT
3K, dM

L

rad

And once the other equations have been solved, L, , can be calculated. This can
be compared with L (from dL/dM= ¢ ) and the difference gives the value of
luminosity due to convective transport L_,,,=L-L,,,

conv

In solving the equations of stellar structure the eqns appropriate to a convective
region must be switched on whenever the temperature gradient reaches the

adiabatic value, and switched off when all energy can be transported by radiation.

19



Conclusions and summary

We have derived the 4t equation to describe stellar structure, and explored the
ways to solve these equations.

As they are not time dependent, we must iterate with the calculation of changing
chemical composition to determine short steps in the lifetime of stars. The crucial
changing parameter is the H/He content of the stellar core (and afterwards, He
burning will become important — to be explored in Richard Monier’s lectures).

We have discussed the boundary conditions applicable to the solution of the
equations and made approximations, that do work with real models.

We have explored the influence of convection on energy transport within stars
and have shown that it must be considered, but only in areas where the
temperature gradient approaches the adiabatic value. In other areas, the energy
can be transported by radiation alone and convection is not required.
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