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Introduction and recap 

 
 
  

We will derive the 4th of  these equations and explore how to solve 
the equations of stellar structure to construct models.  
  

For our stars – which are isolated, static, and spherically symmetric – 
there are four basic equations to describe structure. All physical 
quantities depend on the distance from the centre of the star alone 

1)  Equation of hydrostatic equilibrium: at each radius, forces due to 
pressure differences balance gravity 

2)  Conservation of mass 
3)  Conservation of energy : at each radius, the change in the energy 

flux = local rate of energy release 
4)  Equation of energy transport : relation between the energy flux and 

the local gradient of temperature 
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Learning Outcomes 
The student will learn: 
•  How to derive the 4th equation to describe stellar structure 
•  Explore ways to solve these equations. 
•   How to go about constructing models of stellar evolution – how the models 
can be made to be time variable.  You will gain an understanding of what time 
dependent processes are the most important 
•   How to come up with the boundary conditions required for the solution of the 
equations. 
•   How to consider the effects and influence of convection in stars, when and 
where it is important, and how it can be included into the structure equations.  
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Theoretical stellar evolution 

 
 
  

With Richard Monier, you will discuss the 
results of modern stellar evolutionary 
computations.  
 
The outcome will be this type of theoretical  
HR-diagram.  
 
At present we are deriving the fundamental 
physics underlying the calculations  - the 
end point is a diagram like this.  
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The characteristic timescales 
There are 3 characteristic timescales that aid concepts in stellar evolution 
The dynamical timescale 
Derived in Lecture 2: 
For the Sun td~2000s  
 
The thermal timescale  
Derived in Lecture 4: time for a star to emit its entire reserve of thermal energy 
upon contraction provided it maintains constant luminosity (Kelvin-Helmholtz 
timescale) 
For the Sun tth~30 Myrs 
 
The nuclear timescale  
Time for star to consume all its available nuclear energy (ε = typical nucleon 
binding energy/nucleon rest mass energy 
For Sun tnuc is larger than age of Universe 
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The equation of radiative transport 

 
 
  

We assume for the moment that the condition for convection is not satisfied, and  
we will derive an expression relating the change in temperature with radius in a 
star assuming all energy is transported by radiation. Hence we ignore the effects 
of convection and conduction.   
 
We will make use of your knowledge of Marianne Faurobert, which covered stellar 
atmospheres and radiative transport. 
 
Recall the equation of radiative transport in a plane parallel geometry i.e. the gas 
conditions are a function of only one coordinate, in this case r 
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The equation of radiative transport 

 
 
  

See handout for derivation of equation: 
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Solving the equations of stellar structure 
Hence we now have four differential equations,  which govern the structure of 
stars (note – in the absence of convection).  
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dT(r)
dr

= −
3ρ(r)κR (r)
64πr2σT(r)3
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dM(r)
dr

= 4πr2ρ(r)
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dL(r)
dr

= 4πr2ρ(r)ε(r)

Where 
r  = radius 
P = pressure at r 
M = mass of material within r 
ρ   = density at r 
L  = luminosity at r (rate of energy flow across    
       sphere of radius r) 
T  = temperature at r 
κ R = Rosseland mean opacity at r 
ε    = energy release per unit mass per unit time 

We will consider the quantities: 
P   = P (ρ, T, chemical composition)      The equation of state 
κ R  = κR(ρ, T, chemical composition)  
ε    = ε  (ρ, T, chemical composition)  
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Boundary conditions  

 
 
  

Two of the boundary conditions are fairly obvious, at the centre of the star 
M=0, L=0 at r=0 
 
At the surface of the star its not so clear, but we use approximations to allow 
solution. There is no sharp edge to the star, but for the the Sun  
ρ(surface)~10-7 g cm-3. Much smaller than mean density ρ(mean)~1.4 g cm-3 
(which we derived). We know the surface temperature (Teff=5780K) is much smaller 
than its minimum mean temperature (2×106 K). 
 
 Thus we make two approximations for the surface boundary conditions: 
ρ = T = 0  at r=rs 

i.e. that the star does have a sharp boundary with the surrounding vacuum 
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Use of mass as the independent variable 

 
 
  

The above formulae would (in principle) allow theoretical models of stars with a 
given radius. However from a theoretical point of view it is the mass of the star 
which is chosen, the stellar structure equations solved, then the radius (and other 
parameters) are determined. We observe stellar radii to change by orders of 
magnitude during stellar evolution, whereas mass appears to remain constant. 
Hence it is much more useful to rewrite the equations in terms of M rather than r.  
 
If we divide the other three equations by the equation of mass conservation, and 
invert the latter: 
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dT
dM

= −
3κRL

64π 2r4acT 3

With boundary conditions: 
r=0, L=0 at M=0 
ρ=0, T=0 at M=Ms 

 

We specify Ms  and the chemical composition and now have a well defined set 
of relations to solve. It is possible to do this analytically if simplifying 
assumptions are made, but in general these need to be solved numerically on 
a computer.   
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Stellar evolution 
We have a set of equations that will allow the complete structure of a star to be 
determined, given a specified mass and chemical composition.  However what 
do these equations not provide us with ? 

 
 
  

In deriving the equation for hydrostatic support, we have seen that provided 
the evolution of star is occurring slowly compared to the dynamical time, we 
can ignore temporal changes (e.g. pulsations) 
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2 And for the Sun for example, this is td~2000s, hence this 

is certainly true  

And we have also made the assumption that time dependence can be 
omitted  from the equation of energy generation, if the nuclear timescale 
(the time for which nuclear reactions can supply the stars energy) is 
greatly in excess of tth 
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Stellar evolution 
If there are no bulk motions in the interior of the star, then any changes of 
chemical composition are localised in the element of material in which the 
nuclear reactions occurred. So star would have a chemical composition 
which is a function of mass M.  
 
 

 
 
  

Now lets consider how we could evolve a model 

In the case of no bulk motions – the set of equations we derived must 
be supplemented by equations describing the rate of change of 
abundances of the different chemical elements. Let CX,Y,Z be the 
chemical composition of stellar material in terms of mass fractions of 
hydrogen (X), helium, (Y) and metals (Z) [e.g. for solar system 
X=0.7,Y=0.28,Z=0.02] 
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∂(CX ,Y ,Z )M
∂t

= f (ρ,T,CX ,Y ,Z )
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(CX ,Y ,Z )M ,t0 +δt = (CX ,Y ,Z )M ,t0
+
∂(CX ,Y ,Z )M

∂t
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Ideally we would like to know exactly how much energy is transported by 
convection – but lack of a good theory makes it difficult to predict exactly. We 
can obtain an approximate estimate.  
 
Heat is convected by rising elements which are hotter than their surroundings 
and falling elements which are cooler. Suppose the element differs by δT  from 
its surroundings, because an element is always in pressure balance with its 
surroundings, it has energy content per gram which differs from surrounding 
gram of medium by cp δT (where cp is  specific heat at constant pressure).  
 
If material is mono-atomic ideal gas then cp =5k/2m  
Where m = average mass of particles in the gas 
Assuming a fraction α (≤1) of the material is in the rising and falling columns and 
that they are both moving at speed v ms-1 then the rate at which excess energy 
is carried across radius is: 
 

Influence of convection 

 
 
  

€ 

Lconv =  surface area of sphere ×  rate of transport ×  excess energy

= 4πr2αρv 5kδT
2m

=
10πr2αρvkδT

m
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Hence putting in known solar values, at a radius halfway between surface 
and centre: 
 
 
The surface luminosity of the sun is L¤ =3.86x1026W, and at no point in the 
Sun can the luminosity exceed this value (see eqn of energy production). 
 
What can you conclude from this ? 

As the δT and v of the rising elements are determined by the difference 
between the actual temperature gradient and adiabatic gradient, this 
suggests that the actual gradient is not greatly in excess of the adiabatic 
gradient. To a reasonable degree of accuracy we can assume that the 
temperature gradient has exactly the adiabatic value in a convective region 
in the interior of a star and hence can rewrite the condition of occurrence of 
convection in the form 
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Thus IN A CONVECTIVE REGION we must solve the four differential equations, 
together with equations for ε and P 
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 The eqn for luminosity due to radiative transport is still true: 

 

And once the other equations have been solved, Lrad can be calculated. This can 
be compared with L (from dL/dM= ε ) and the difference gives the value of 
luminosity due to convective transport Lconv=L-Lrad 
 

In solving the equations of stellar structure the eqns appropriate to a convective 
region must be switched on whenever the temperature gradient reaches the 
adiabatic value, and switched off when all energy can be transported by radiation. 
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Conclusions and summary 

 
 
  

We have derived the 4th equation to describe stellar structure, and explored the 
ways to solve these equations. 
 
As they are not time dependent, we must iterate with the calculation of changing 
chemical composition to determine short steps in the lifetime of stars. The crucial 
changing parameter is the H/He content of the stellar core (and afterwards, He 
burning will become important – to be explored in Richard Monier’s lectures).  
 
We have discussed the boundary conditions applicable to the solution of the 
equations and made approximations, that do work with real models. 
 
We have explored the influence of convection on energy transport within stars 
and have shown that it must be considered, but only in areas where the 
temperature gradient approaches the adiabatic value. In other areas, the energy 
can be transported by radiation alone and convection is not required.  
 


